

Viscoelastic ruptures unbounded by classical speed limits

Huihui Weng

Monday, June 24, 2024 Smolenice Castle, Slovakia

Rupture modes

Rupture modes

2D Linear Elastic Fracture Mechanics

2D equation-of-motion: $G_c = G(v_r, L, \Delta \tau) \propto L$

Fracture energy

Energy release rate

2-D theories, Kostrov, Freund, Andrews (60-70s)

Classical speed limits

Validated speed limits in laboratory

Sharon and Fineberg, 1999; Svetlizky et al., 2019; Kammer et al., 2018

Beyond classical speed limits in 2D

Finite rupture width in 3D

2004 Mw 9.3 Sumatra

Wang et al 2011

Extended 3D LEFM theory

Weng and Ampuero, 2019

Highly damaged fault zone

WordPress.com

Unbounded ruptures in numerical simulations

Weng, 2024, In review

Mach fronts in mode III

 Δ

Weng, 2024, In review

Mach fronts in mode III

\\ \\ -\\

Weng, 2024, In review

Theory for viscoelastic ruptures

Theory for viscoelastic ruptures

Also valid in 2D

Asymptotically solution for supershear ruptures:

Velocity dispersion and attenuation

Weng, 2024, In review

Theory for viscoelastic ruptures

Asymptotically solution for very slow ruptures:

$$G_0 = G_{equiv} \approx G_c (1 + 2 \frac{\eta v_r}{\Lambda})$$

Finite thickness of viscoelastic layer

Finite thickness of viscoelastic layer

Weng, 2024, In review

- Viscoelastic ruptures can propagate at a continuum of terminal speeds not bounded by classical speed limits.
- All simulated speeds are predicted by the new theory incorporating viscoelasticity.
- Beyond classical speed limits, rupture dynamics are independent of any macroscopic length and is controlled only by local properties around the rupture tip.