Interpretation of non-DC components of MTs: A review

Václav Vavryčuk

Institute of Geophysics, Prague

Definition and

basic characteristics

Shear earthquakes in isotropy (Aki & Richards 2002, Eq. 3.22):

$$M_{kl} = \mu u S (v_k n_l + v_l n_k)$$

$$M_{kl} = M_0 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

double-couple (DC)

Basic characteristics of non-DC components

Indications of non-DC:

- P-wave radiation pattern
- anomalous P/S amplitude ratio

Areas with non-DC seismicity:

- geothermal and volcanic regions,
- complex fractured zone with interacting fault segments
- steep slopes with landslides
- subducting slabs
- mines, oil and gas fields

Physical processes

- magma and fluid flow in rocks
- stress anomalies related to complex fault geometry
- tensile stress regime
- shear faulting in anisotropic focal zone
- anthropogenic activities (hydrofracking, fluid injection, fluid extraction, mining, chemical and nuclear explosions)

Example 1: non-DC earthquakes in West Bohemia

Example 2: Non-DC events in mines

Pyhasalmi ore mine, Findland

- depth of 1.4 km
- ore forms a potatoshaped body
- 16 geophones (4.5 Hz)
- sampling rate 3000 Hz

Kuehn & Vavryčuk, Tectonophysics, 2013

Example 3: Non-DC events in mines

Pyhasalmi ore mine, Findland

- depth of 1.4 km
- ore forms a potatoshaped body
- 16 geophones (4.5 Hz)
- sampling rate 3000 Hz

Kuehn & Vavryčuk (Tectonophysics, 2013)

Example 4: Non-DC events in Iceland volcanic region

Seismicity in Reykjanes Penninsula before the 2021 Fagradalsfjall volcano eruption

Mid-Atlantic Ridge – slow-spreading rift

REYKJANET network

16 BB local seismic stations sampling rate 250 Hz epicentral distance: up to 20-25 km

Hrubcová & Vavryčuk (EPSL, 2022; Tectonophysics, 2023)

Non-DC components: irregular fault geometry

Complex shear faulting: schemes

Multiple (non-interacting) events

- subsequent independent events
- simultaneous occurrence in time
- different faults

Irregular fault geometry

- smooth bending of faults
- sharp bending of faults
- differently oriented segments

Fault segment interaction

- isolated interacting segments
- fault steps
- local stress anomaly due to interaction

Complex shear faulting: fault steps

- depth of 15 km
- surface deformations
- uplift up to 8 m
- interaction of two faults

Cesca et al. (EPSL, 2017)

Complex shear faulting: activation of several fault segments

2017 Pohang earthquake (Mw 5.4)

• triggered by fluid injections in a geothermal reservoir

- oblique contraction
- joint movement of two intersecting faults
- reverse and strike slip movements

Son et al. (JGR, 2020)

Non-DC components: tensile/compressive faulting

Tensile faulting: scheme

Opening or closing of a fault during shear rupture

Example: hydrofracturing

- high pore pressure can cause opening faults during the rupture process
- CLVD and ISO are positive

Shear-tensile faulting: radiation pattern

Radiation psttern as a function of the slip deviation α

Swarm area in West Bohemia, Czech Republic

Geodynamically active area:

- Intersection of two major fault systems
- Persistent seismicity
- Emanations of CO₂ rich fluids
- Springs of mineral water
- Quaternary volcanoes

West Bohemia earthquake locations: period 2008-2018

Non-DC components for shear-tensile faulting

Opening/closing of a fault: West Bohemia

Vavryčuk et al. (JGR, 2021)

Tensile/compressive faulting in Iceland volcanic region

Seismicity in Reykjanes Penninsula before the 2021 Fagradalsfjall volcano eruption

Non-DC components: seismic anisotropy

Shear earthquakes in anisotropy (Aki & Richards 2002, Eq. 3.19):

$$M_{kl} = uSc_{ijkl}v_kn_l$$

$$M_{kl} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{12} & M_{22} & M_{23} \\ M_{13} & M_{23} & M_{33} \end{bmatrix}$$

full (non-DC) moment tensor

Deep earthquakes in the Tonga subduction slab

Tonga subduction

Pacific Plate subducts under the Australian Plate

Plate velocity is 10.5 cm/yr

Azimuth of the Tonga Trench is N210°E

Dip of the subducting slab is 60°

The highest deep seismicity in the world

- depth 100-500 km
- depth 500-700 km, southern cluster
- depth 500-700 km, northern cluster

Vavryčuk (JGR, 2004; PEPI, 2008)

Slab geometry and mantle composition

Orientation of slab, stress and anisotropy

- x normal of slab
- x stress
- x anisotropy

Maximum compression is along the slab ("<u>down-dip</u> <u>compression</u>")

Stress and anisotropy orientations coincide

Anisotropy is stress induced!

Vavryčuk (JGR, 2004; PEPI, 2008)

Predicted velocities in the slab

P-wave anisotropy: 6%,S1-wave anisotropy: 11%S2-wave anisotropy: 10%

Summary

Non-DC components provide essential information about faulting, tectonic stress and physical properties of material in the focal zone

Shear-tensile faulting

Understanding complexities of fracturing

Mapping of fluid flow and rock compaction

Orientation of anisotropy in focal area

Detection of stress anomalies and fault nteractions

Velocities of P, S1 and S2 waves in focal area