Numerical Modeling of Earthquake Motions: Waves and Ruptures

June 23 - 27, 2024 Smolenice Castle, Slovakia

The finite-difference modeling: where is it and what's next?

<u>Peter Moczo</u> Jozef Kristek Jaroslav Valovcan Martin Galis Miriam Kristekova

> Comenius University Bratislava, Slovakia and Slovak Academy of Sciences, Slovakia

Introduction

if a function depends on time and space, and is **discretized in time and space**, we must analyze consequences of discretization in the **time**, **space**, **frequency** and **wavenumber** domains

Introduction

for decades, FD schemes have been developed without considering the wavenumber domain

though the relevant analysis was, in fact, possible already in 60s

> if it was performed, FD schemes today could be better (?)

Outline

homogeneous medium	exact wavefield 1D
	spatially discretized wavefield
	consequence for spatial sampling
	governing equations in the WN domain
	FD scheme

exact wavefield 1D

spatially discretized wavefield

spatial discretization of a medium

exact wavefield in a WN-limited medium

consequence for FD modeling

homogeneous medium

$$\rho \frac{\partial v(z,t)}{\partial t} = \frac{\partial \sigma(z,t)}{\partial z} \qquad C \frac{\partial \sigma(z,t)}{\partial t} = \frac{\partial v(z,t)}{\partial z}$$

assume a harmonic wave and transform to WN domain:

wavenumber spectrum

of a function discretized with a grid spacing

h is periodic with period

$$2\frac{\pi}{h} =: 2k_N$$

to avoid aliasing

$$k_{\max} \leq \frac{\pi}{h} \equiv k_N$$

a discrete grid with a grid spacing h cannot support wavenumbers larger than k_N

source and medium
$$\Rightarrow k_{\text{max}} = \frac{\omega_{\text{max}}}{c} \qquad \lambda_{\text{min}} = \frac{2\pi}{k_{\text{max}}}$$

assuming grid spacing h

$$k_{\max} \leq k_{N}$$

$$\frac{2\pi}{\lambda_{\min}} \leq \frac{\pi}{h}$$

$$h \leq \frac{\lambda_{\min}}{2}$$

$$2 \leq \frac{\lambda_{\min}}{h} =: N_{\lambda \min}$$
at least 2 grid spacings per minimum wavelength

because we can choose a source with spectrum limited to

 $\omega_{\rm max}$

we may restrict to $\mathcal{F}_{z \rightarrow k}$

$$\rho \, \frac{\partial \tilde{v}(k,t)}{\partial t} = -ik \, \tilde{\sigma}(k,t)$$

apply
$$k_N$$
 - limited $\mathcal{F}_{z \to k}^{-1}$
 $\rho \frac{\partial v(z,t)}{\partial t} = \left[\frac{1}{hz}\cos\left(\frac{\pi z}{h}\right) - \frac{1}{\pi z^2}\sin\left(\frac{\pi z}{h}\right)\right]^{\frac{z}{*}} \sigma(z,t)$

spatial **derivatives** of $\sigma(z,t)$ and v(z,t)

are **replaced by** continuous, spatially unbounded **convolutions**

> in a finite spatial grid, the convolutions must be approximated by **discrete convolutions**

this and a discrete approximation of the temporal derivative leads to **FD scheme** analysis of stability and grid dispersion yields grid spacing and time step

in the homogeneous medium FD-simulated wavefield can be, depending on the FD scheme, accurate up to k_N

though, no so far developed FD scheme allows as few as 2 grid spacings per minimum wavelength

Outline

homogeneous medium	exact wavefield 1D
	spatially discretized wavefield
	consequence for spatial sampling
	governing equations in the WN domain
	FD scheme

exact wavefield 1D

spatially discretized wavefield

spatial discretization of a medium

exact wavefield in a WN-limited medium

consequence for FD modeling

heterogeneous medium exact wavefield 1D

$$\rho(z)\frac{\partial v(z,t)}{\partial t} = \frac{\partial \sigma(z,t)}{\partial z} \qquad C(z)\frac{\partial \sigma(z,t)}{\partial t} = \frac{\partial v(z,t)}{\partial z}$$

assume a harmonic wave and transform to WN domain: $\omega \tilde{\rho}(k) * \tilde{V}(k, \omega) = -k \tilde{\Sigma}(k, \omega) \qquad \omega \tilde{C}(k) * \tilde{\Sigma}(k, \omega) = -k \tilde{V}(k, \omega)$

> assume that wavenumber spectra $\tilde{\rho}(k) \quad \tilde{C}(k) \quad \tilde{V}(k) \quad \tilde{\Sigma}(k)$

are bounded by wavenumbers

$$k_{
ho}$$
 k_C k_V k_{Σ}

then
$$k_{\rho} + k_{V} = k_{\Sigma} \qquad k_{C} + k_{\Sigma} = k_{V}$$

possibilities in a heterogeneous medium

 $k_{\rho} = \infty$ and $k_C = \infty$ $0 < k_{\rho} < \infty$ and/or $0 < k_C < \infty$

$$\implies \quad k_V = k_{\varSigma} = \infty$$

in the heterogeneous medium, wavenumber spectrum of an exact wavefield is **unbounded**

because

and

wavenumber spectrum of an exact wavefield is **unbounded** in the heterogeneous medium discrete grid with a grid spacing h cannot support wavenumbers larger than k_N

it is in principle impossible to simulate an exact wavefield in a heterogeneous medium using the FD method

SO,

we must look at a wavefield in a k_N – limited medium

heterogeneous medium exact wavefield !

Exact model

$$C(z) = C_1 + (C_2 - C_1) \delta(z/\ell)$$

Wavenumber
$$k_m$$
-limited model
 $C_{k_m}(z) =$
 $C_1 + \frac{1}{\pi} \ell (C_2 - C_1) \operatorname{Sinc}(k_m z)$

Exact model of medium Wavenumber band-limited model of medium ∇ Band-limited at $1/\lambda_m = 1 \text{ m}^{-1}$ Band-limited at $1/\lambda_m = 2 \text{ m}^{-1}$ Band-limited at $1/\lambda_m = 5 \text{ m}^{-1}$ -31 -30 -9 -8 C_1 -7 -6 -5 -4 -3 -2 C₂ -1 0 2 3 Position [m] 4 5 C_1 6 9 30 31 0.255 0.255 0.245 0.970 0.965 0.255 0.255 +····\/····\/\/···· - 1.005 - 1.000 - 0.995 - 0.990 - 0.985 - 0.975 - 0.975 - 0.965 1.005 1.000 0.995 0.990 0.980 0.980 0.975 0.965 0.255 0.250 0.245 1.005 1.000 0.995 0.990 0.980 0.980 0.975 0.965 ∇ Compliance [Pa⁻¹] Compliance [Pa⁻¹] Compliance [Pa-1]

Model of Thin Layer Between Two Halfspaces

exact wavefield ! heterogeneous medium

Spectra of Exact Solutions for the Model of Thin Layer Between Two Halfspaces

IMPLICATION of the finding on the exact wavefield

if we need the reflected wave to exist and be accurate up to frequency f_m *i.e.* up to wavenumber k_m we must limit the model of medium by at least wavenumber $2k_m$

we still talk about the exact wavefield !

in the original model of medium and its k_m -limited version

is there a consequence for the FD modeling ?

yes, there is !

let us recall first :

having an **exact** model of medium with a minimum speed $$c_{\rm min}$$ we need to numerically simulate a wavefield up to some maximum frequency $$f_{\rm max}$$

this means that we have to sufficiently accurately simulate the wavefield for

$$f \leq f_{\max}$$
 $\lambda \geq \lambda_{\min}$ $k \leq k_{\max} = \frac{2\pi}{\lambda_{\min}}$

as we know, we need a spatial grid spacing hsuch that $N_{\lambda_{\min}} = \frac{\lambda_{\min}}{h} \ge 2$ and $k_{\max} \le k_N = \frac{\pi}{h}$

let us recall as a second :

because the grid with a spatial grid spacing h

cannot support wavenumbers larger than k_N

we must limit our model of medium in the WN domain by

 k_N

and here comes

what we have found in the numerical experiment with the exact wavefields :

if we want the wavefield to be accurate up to wavenumber k_N we must limit the model of medium by wavenumber

 $2k_N$

then it is obvious that

MAIN CONSEQUENCE AND CONCLUSION

no matter which FD scheme is used, the simulation cannot be sufficiently accurate

if the medium is not $2k_N$ – limited and minimum wavelength is sampled by less than **4 spatial grid spacings**

what's next ?

a proper discrete representation of a heterogeneous medium and the corresponding FD scheme

Thank you for your attention

and, please, look at these articles, there is much to learn

Moczo, Kristek, Kristekova, Valovcan, Galis, Gregor (2022)

Material Interface in the Finite-Difference Modeling: A Fundamental View

Bull. Seismol. Soc. Am.

Valovcan, Moczo, Kristek, Galis, Kristekova (2023) Can higher-order finite-difference operators be applied across a material interface? *Bull. Seismol. Soc. Am.*

Valovcan, Moczo, Kristek, Galis, Kristekova (2024) How accurate numerical simulation of seismic waves in a heterogeneous medium can be? Bull. Seismol. Soc. Am.