Fault-Valve Instability: A Mechanism for Slow Slip Events

Eric M. Dunham¹, So Ozawa^{1,2}, Yuyun Yang^{1,3}

1 Stanford University, 2 now Earthquake Research Institute, Japan, 3 now Chinese University Hong Kong

Funded by US National Science Foundation, Japan Society for Promotion of Science, Yamada Science Foundation

Fault zone fluid migration and pore pressure evolution models

Idealized model for permeability evolution

elastic dependence on effective stress:

stress sensitivity parameter ~10 MPa $\sqrt{ }$

$$
k = k^* e^{-(\sigma - p)/\sigma^*}
$$

minimally parametrized (but ad hoc) evolution equation for permeability:

$$
\frac{\partial k^*}{\partial t} = -\frac{V}{L} (k^* - k_{\text{max}}) - \frac{1}{T} (k^* - k_{\text{min}})
$$

permeability
increase with slip percentage from
healing/sealing

 \rightarrow constant T and L in Zhu et al. (2020), later depth-dependent

Our original fault valving cycle simulations

⁽ λ hu et al., 2020) 4λ

Motivation for additional study

- Which processes and conditions are required for instability?
- Quantitative expressions for recurrence interval, slip pulse length, etc.
- Sensitivity to model assumptions (e.g., permeability evolution model)

Study with spatially uniform properties in homogeneous whole-space

- Linear stability analysis for perturbations about steady sliding (V_0) and steady fluid flow (q_0)
- Nonlinear simulations

Fluid flow destabilizes steady sliding, even with velocity-strengthening friction (example below)

- fluid-driven aseismic slip fronts propagate in direction of fluid flow
- recurrence interval (and slip/event) controlled by permeability evolution timescale

Fault valve instability mechanism – fluid flow

Fault valve instability mechanism – frictional sliding

Fault valve instability mechanism – frictional sliding

(Ozawa, Yang, & Dunham, 2024, in review) $\frac{9}{2}$

Fault valve instability mechanism – frictional sliding

Linear stability analysis predicts wavelength of max growth

(Ozawa, Yang, & Dunham, 2024, in review)

Transition between fault valve instability and classical rate-state frictional instability for VW friction

Subduction zone simulations

Integrate $q = \frac{k}{\eta}$ $\frac{\partial p}{\partial z} - \rho g\Bigr) \boldsymbol{\rightarrow}$ steady state $p(z)$ and $k(z)$ distributions, then unsteady...

+ aging law rate-state friction, transition from VW to VS around 22 km depth

(Ozawa, Yang, & Dunham, 2024, in review) 13

Subduction zone simulations

Integrate $q = \frac{k}{\eta}$ $\frac{\partial p}{\partial z} - \rho g\Bigr) \boldsymbol{\rightarrow}$ steady state $p(z)$ and $k(z)$ distributions, then unsteady...

(4 models A-D, different colors in plots to follow)

(Ozawa, Yang, & Dunham, 2024, in review) 14

Subduction zone simulations

Integrate $q = \frac{k}{\eta}$ $\frac{\partial p}{\partial z} - \rho g\Bigr) \boldsymbol{\rightarrow}$ steady state $p(z)$ and $k(z)$ distributions, then unsteady...

(4 models A-D, different colors in plots to follow)

(Ozawa, Yang, & Dunham, 2024, in review) 15

Reference subduction model

Reference subduction model

Reducing effective stress to ~1-10 MPa in slow slip region (by reducing shallow permeability) increases recurrence interval and decreases slip/event

and SSE propagation velocity, recurrence interval, slip/event

Slow slip events "sharpen" if VW friction extends deeper

(Ozawa, Yang, & Dunham, 2024, in review)

Transition zone (or gap) between seismogenic zone and episodic tremor and slip (ETS) in some subduction zones

Transition zone in Cascadia appears to be partially coupled (over past ~20 yr). Does it catch up in megathrust events? Or through some form of aseismic slip or distributed viscous shear? Major differences in hazard!

Fluid sink (near mantle wedge) corner creates transition zone between seismogenic zone and slow slip events

- sliding in transition zone is stabilized against fault valving by reduced flow rate
- slow slip events less complex, more periodic
- variable slip rate (coupling) in transition zone over cycle

(Ozawa, Yang, & Dunham, 2024, in review)

Conclusions and future directions

Fault valving instability might explain slow slip

- Requires pressure-sensitive frictional slip, not distributed viscous flow
- Robust to frictional parameters (velocity-weakening or velocity-strengthening) and effective stress
- Recurrence interval (and slip/event) controlled by depth-dependent healing time
- Complexity (or periodicity) controlled by fault width (relative to length scale that depends on flow rate) But:
- Propagation rates slower than observed (but increase as effective stress decreases)
- Propagation only in direction of fluid flow (for velocity-strengthening friction)
- 3D simulations (in progress!) required to understand along-strike propagation

Priorities for future work:

- *Fault-normal flow*, especially upward flow into overriding plate in subduction zones
- Accounting for *fault zone structure*, distinguishing between pressure & transport properties on slip surfaces (controlling fault strength) and in damage zone (controlling along-fault transport)
- Process-specific *porosity and permeability evolution models* (e.g., cracking & dilatancy in damage zone, vein formation & sealing by precipitation, silica transport)
- *Chemistry*: dehydration reactions; reaction kinetics for dissolution & precipitation of silica and similar minerals; lithology-dependent silica sources
- Coupling to *evolving temperature* from conduction and advective heat transport, as well as shear heating