

The dynamics of elongated earthquakeruptures

Huihui Weng and Jean-Paul Ampuero

Université Côte d'Azur, IRD, Géoazur

Smolenice Castle, Slovakia June 30 - July 4, 2019

Earthquake kinematics

Ide, 1997

How to link kinematics and dynamics of earthquakes?

Can we predict the earthquake size based on earthquake dynamics theory?

Outline

• Motivations

- Model (theory and simulations)
- Implications
- Ongoing work

Linear elastic fracture mechanics

For crack-like ruptures in 2D and 3D (unbounded):

$$
G_c = g(v) \frac{\Delta \tau^2 L}{2\mu}
$$

Kostrov, Freund, Andrews (60-70s)

Finite seismogenic width

Weng and Ampuero, JGR, in revision

Elongated earthquake ruptures

Ishii et al 2005

Elongated earthquake ruptures

Galis et al 2018

Rupture unzipping the lower edge of the seismogenic zone (simulation by Junle Jiang)

Outline

- Motivations
- Model (theory and simulations)
- Implications
- Ongoing work

Analytical model

W

Ingredients

- Anti-plane fault in 3D full-space
- Uniform elastic properties
- Uniform fault parameters
- Uniform seismogenic width
- Steady-state speed

Energy release rate (*L>W*): 2.5D model

$$
G_0 = \frac{\Delta \tau^2 W}{\pi \mu}
$$

Weng and Ampuero, JGR, in revision

2D strip problem (mode I crack)

 \triangleright Steady-state energy release rate is proportional to width of strip

$$
\triangleright \qquad G_c = G_0 \left(1 - \frac{\dot{v}_r W}{v_s^2} \frac{1}{\alpha_s^4} \right)
$$

$$
\alpha_s = \sqrt{1-(v_r/v_s)^2}
$$

2D strip problem (mode I crack)

 \triangleright Steady-state energy release rate is proportional to width of strip

$$
\triangleright \qquad G_c = G_0 \left(1 - \frac{\dot{v}_r W}{v_s^2} \frac{1}{\alpha_s^4} \right)
$$

$$
\alpha_s = \sqrt{1-(v_r/v_s)^2}
$$

Validation in 3D simulations

$$
G_c = G_0 \left(1 - \frac{\dot{v}_r W}{v_s^2} \frac{1}{A \alpha_s^P} \right)
$$

Theoretical equation:

Weng and Ampuero, JGR, in revision

"Inertial" rupture

- Rupture evolution predicted by rupture-tip-equation-of-motion
- Rupture is also "inertial"

Outline

- Motivations
- Model (theory and simulations)
- Implications
	- Final earthquake size
	- Super-cycles
	- Seismicity frequency-size distr.
- Ongoing work

Determine earthquake size

www.thinglink.com

Determine earthquake size

www.thinglink.com

Determine earthquake size

www.thinglink.com

Super earthquake cycles?

- \triangleright Fault segmentation
- \triangleright Maximum magnitude?

Super cycles

Stressing rate:

$$
\dot{\tau}(L) = \gamma_l \exp(-L/W) + \gamma_l
$$

Assumption:

$$
G_c/G_0=B\Delta\tau^{n-2}
$$

Seismicity frequency-size distribution

Assumption: $G_c/G_0 = B\Delta \tau^{n-2}$

Seismicity frequency-size distribution

Outline

- Motivations
- Model (theory and simulations)
- Implications
- Ongoing work: supershear

In-plane sub-shear

$$
\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A \alpha_R^P
$$

Theoretical equation:

$$
\alpha_R = \sqrt{1 - (v_r/v_R)^2}
$$

Weng and Ampuero, In prep.

Dynamics of supershear ruptures

- Steady-state supershear
- G_c/G_0 controls supershear speed
- Critical value of G_c/G_0 for supershear
- On-going analytical work:

$$
G^{sup}=g(v_r)G_0\left(\frac{\Lambda}{W}\right)^{q(v_r)}
$$

Weng and Ampuero, In prep.

3D numerical simulations

- \triangleright A new rupture-tip-equation-of-motion for elongated ruptures elucidates how the evolution of rupture speed of large earthquakes (large aspect ratio) depends on fault strength and stress.
- \triangleright This theoretical equation has important implications for evaluating how final earthquake size depends on fault stress and strength.
- \triangleright The seismogenic width also plays significant effects on dynamics of supershear ruptures.

The manuscript can be download from EarthArXiv: eartharxiv.org/9yq8n/

Information from source time function

Analytical model

$$
\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} - k_3^2 u = \frac{1}{v_s^2} \frac{\partial^2 u}{\partial t^2}
$$

Rupture acceleration

- $G_0 > G_c \rightarrow$ ruptures accelerate \uparrow
- G_c/G_0 plays an important role in controlling rupture speed

Rupture deceleration

- G_0 < G_c \rightarrow ruptures decelerate \downarrow
- Starting speed also plays a role
- Larger rupture speed lead to longer distance

$$
\frac{\dot{v}_r W}{v_s^2 (1 - G_c / G_0)} = 1.2 \pi \alpha_s^{2.6}
$$

$$
\alpha_s = \sqrt{1 - (v_r / v_s)^2}
$$

Elongated ruptures in the lab

Rupture potential

$$
\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A \alpha_s^P
$$
\n
$$
\frac{v_r dv_r}{v_s^2 \alpha_s^P} = A(1 - G_c/G_0) dx/W
$$
\n"Kinetic" energy?
$$
\oint
$$
 "Potential" energy?
\n
$$
\frac{1}{P - 2} (\alpha_s^{2-P} - 1)|_{v_{r1}}^{v_{r2}} = \int_{L_1}^{L_2} A(1 - G_c/G_0) dx/W
$$
\n
$$
\oint
$$
 Rupture potential
\n
$$
\varphi(L) = \int_0^L A(1 - G_c/G_0) dx/W
$$

Fracture energy on fault

Fracture energy is a function of final slip *D*(*x*)? For bounded fault $D(x) = \gamma W \Delta \tau(x)/\mu$ then $G_c \propto \Delta \tau^n$?

Source time function of earthquakes

General pattern of earthquake $-$ triangular $M_{\text{Meier et al 2017}}$

What is the intrinsic physics?

Constrains from STF

Assuming n=2/3, γ=1, and $v_r(0)=0$