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Earthquake kinematics 

Meng et al. (2016) 

Ide, 1997 

How to link kinematics and dynamics of 
     earthquakes?
Can we predict the earthquake size based 
on earthquake dynamics theory?



Outline 

•  Motivations 
•  Model (theory and simulations) 
•  Implications 
•  Ongoing work 



Linear elastic fracture mechanics  

Kostrov, Freund, Andrews (60-70s) 

For crack-like ruptures in 2D 
and 3D (unbounded): 
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Finite seismogenic width 

Fault and Rock Mechanics (FARM) 
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Elongated earthquake ruptures 
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Elongated earthquake ruptures 

Galis et al 2018  
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Analytical model 

Ingredients 
 

•  Anti-plane fault in 3D full-space 
•  Uniform elastic properties 
•  Uniform fault parameters 
•  Uniform seismogenic width 
•  Steady-state speed 
 

W 

Energy release rate (L>W ): 

Weng and Ampuero, JGR, in revision  

2.5D model 



2D strip problem (mode I crack) 

Ø  Steady-state energy release rate is proportional to width of strip 
 

 

Ø    

Marder (1998)  

Waves are reflected back 

W 
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Validation in 3D simulations 
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A= π  and P= 3 

A= 1.2π  
P= 2.6 



“Inertial” rupture 
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•  Rupture evolution predicted by rupture-tip-equation-of-motion 

•  Rupture is also “inertial” 

Weng and Ampuero, JGR, in revision  

asperity barrier 



Outline 

•  Motivations 
•  Model (theory and simulations) 
•  Implications 

•  Final earthquake size 
•  Super-cycles 
•  Seismicity frequency-size distr. 

•  Ongoing work 
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Gravity potential 

Rupture potential 
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Super earthquake cycles? 

Ø  Fault segmentation 

Ø  Maximum magnitude? 

Villegas-Lanza et al., (2016) 



Deeper Creep 
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Seismicity frequency-size distribution 

Assumption: 



Seismicity frequency-size distribution 
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Outline 

•  Motivations 
•  Model (theory and simulations) 
•  Implications 
•  Ongoing work: supershear 



In-plane sub-shear 
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Theoretical equation: 



Dynamics of supershear ruptures 
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•  Steady-state supershear 

•  Gc/G0 controls supershear
 speed 

•  Critical value of Gc/G0 for 
supershear 

3D numerical simulations 

On-going analytical work: 

Critical Gc/Gc 

S wave speed 

Weng and Ampuero, In prep. 



Conclusion 

Ø  A new rupture-tip-equation-of-motion for elongated ruptures 

elucidates how the evolution of rupture speed of large earthquakes 

(large aspect ratio) depends on fault strength and stress. 

Ø  This theoretical equation has important implications for evaluating 

how final earthquake size depends on fault stress and strength. 

Ø  The seismogenic width also plays significant effects on dynamics of 

supershear ruptures. 

The manuscript can be download from EarthArXiv: 
eartharxiv.org/9yq8n/ 
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Information from source time function 



Analytical model 

x2
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x3

Slip profile

Seismogenic width W

Aseismic region
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Aseismic region

Sin(k3x3)

(3 equations) 

Reduce to 1 equation 

Slip approximation 



•  G0 > Gc  à ruptures accelerate ↑ 

•  Gc /G0 plays an important role in controlling

 rupture speed 

A= π  and P= 3 

Rupture acceleration 
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•  G0 < Gc  à ruptures decelerate ↓ 

•  Starting speed also plays a role 

•  Larger rupture speed lead to longer distance 

A= 1.2π  
P= 2.6 

Rupture deceleration 

2.5D simulations 



Elongated ruptures in the lab 



Rupture potential 
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“Potential” energy? “Kinetic” energy? 

Rupture potential  



Fracture energy on fault 

Fracture energy is a function of final slip D(x)? 
 

For bounded fault                           then                ? 
 

? 

Viesca and Garagash (2015) Rice (2006)  
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Source time function of earthquakes 

Meier et al 2017 General pattern of earthquake – triangular 
 

What is the intrinsic physics？ 



Constrains from STF 

Assuming n=2/3, γ=1, and vr(0)=0 

input 

vr0=0 


