

Multiple observations and modeling of the tiny ground motions associated with coseismic gravity changes

Martin Vallée and Kévin Juhel

With inputs from Jean Paul Ampuero, Olivier Coutant, Robert Busby, Kasey Aderhold, Jean-Paul Montagner…

Extensive use of **publicly available broadband networks**

Numerical modeling of earthquake motions – Smolenice – July 3, 2019

The Prompt Elastogravity Signals (PEGS)

 Use of an **unexploited** part of the seismograms : the time window **between origin time and P-wave arrival** High potential for **rapid determination of large earthquake source parameters**

How do we understand and model the Prompt Elastogravity Signals ?

$$
\left\{\begin{array}{rcll} {}^{\ast}\rho_{0}\ddot{\mathrm{u}}&=&\boldsymbol{\nabla\cdot\sigma}\;+\;\Delta\rho\;\mathrm{g}_0\;+\;\boldsymbol{f}\;+\;\rho_{0}\,\Delta\mathrm{g}\;,\quad\text{Force balance equation (earthquake source term }\boldsymbol{\mathit{f}}\\[5pt] \nabla\cdot\Delta\mathrm{g}&=&-4\pi G\,\Delta\rho\,,\qquad &\text{Poisson equation}\\[5pt] \Delta\rho&=&-\nabla\cdot(\rho_{0}\,\mathrm{u})\,,\qquad &\text{Continuity equation}\end{array}\right.
$$

In theory, there is a **full coupling** between the gravitation perturbation **Δg** and the displacement **u**

However, for the force balance equation :

(1) **Close from the source** (i.e. at locations where P waves already arrived), and at not-too-low frequencies (above ~0.001Hz), the source term *f* largely dominates over the force gravity terms

(2) **Far from the source** (i.e. where P waves did not arrive yet), the source term *f* has no direct influence and the density pertubation can be neglected : the only force term is $\rho_0 \Delta g$

Direct effect : gravity In the volume directly affected by the elastic waves (grey area) : **MDI Tohoku** seismometer earthquake ϕ_0 $\ddot{\mathbf{u}} = \nabla \cdot \boldsymbol{\sigma} + \Delta \rho \mathbf{X}_0 + f + \rho_0 \mathbf{X}_0$ Air *u can be known everywhere with numerical methods solving the classical elastodynamic equation (e.g. Axitra) with source term f (earthquake)* Induced effect: seismic waves Gravity perturba generated by gravity **perturbations** Earth Credits: IPGP, 2017 **This creates a gravity** In the volume directly where gravity-induced elastic **perturbation** waves can arrive before the direct waves (green area) **everywhere** $\phi_0 \ddot{\textbf{u}} = \nabla \cdot \boldsymbol{\sigma} + \Delta \rho \mathbf{X}_0 + \mathbf{X} + \rho_0 \Delta \mathbf{g},$ *∆g can be known everywhere using an u can be known everywhere with numerical methods integral form of the Poisson equation solving the classical elastodynamic equation (e.g. Axitra), (e.g. Dahlen &Tromp, 1998) with source term* $ρ₀Δ*g*$

Illustration at some time between origin time and P-wave arrival

How do we understand and model the Prompt Elastogravity Signals ?

Schematic representation at a time between earthquake origin and Pwave direct arrival (direct elastic waves are inside the grey area)

As soon as an earthquake occurs (and **thus before the arrival of seismic waves**), a weak signal is expected to be recorded at a broadband seismometer, due to the **difference between** :

- The **gravity perturbation** induced by the earthquake rupture and elastic waves [*Harms et al., 2015, Montagner et al., 2016*] : **Direct effect**
- The **elastic relaxation** of the Earth, itself affected by the gravity perturbations [*Vallée et al., 2017, Juhel et al., 2018*] : **Induced effect**
- **« Prompt Elastogravity signals »**
- **Questions following the first PEGS observations** made during the 2011 Tohoku earthquake, in order to **better assess the PEGS potential** for source parameter determination :
	- **What are the factors (other than magnitude) controlling the signal amplitude and detectability ?**
	- **Are such signals detectable for lower magnitude earthquakes ?**
	- **How can networks of broadband stations improve the signal detectability?**

Factors controlling the PEGS detectability

Vallée and Juhel, 2019

Mw=8.5 scenarios

- 1) For a given magnitude and source time function (STF), **strike-slip and deep earthquakes generate larger PEGS than thrust earthquakes** on shallow dipping interfaces
- 2) Direct relation between STF and gravity perturbations [Harms et al., 2015] : **Rapidly growing moment rate functions increase the signal observability**
- 3) PEGS detection **requires the earthquakes to be recorded by good broadband stations in a relatively quiet seismic period** (e.g. not in the hours following a large earthquake)
- 4) For earthquakes generating PEGS close to the seismic noise, **detection can be achieved by combining the observations at several sensors** (array techniques)

Single-stations observations

The 2012/04/11 Mw=8.6 Wharton Basin earthquake

Map showing the PEGS predicted amplitude (using GCMT source parameters), and the 5 broadband stations with lowest noise in the [0.002-0.03Hz] frequency range

Observed (red) and modeled (black) waveforms at the 5 best stations, using an event-specific source time function (SCARDEC method)

 Large positive signals observed at IPM and PSI Good agreement between observed and modeled PEGS *Vallée and Juhel, 2019*

The 2018/08/19 Mw=8.2 deep Fiji earthquake

Map showing the PEGS predicted amplitude (using GCMT source parameters), and the 4 broadband stations with lowest noise in the [0.002-0.03Hz] frequency range

Observed (red) and modeled (black) waveforms at the 4 best stations, using an event-specific source time function (SCARDEC method)

- **Large negative signal observed at MSVF (and AFI)**
- **Positive signal at NOUC**
- **Good agreement between observed and modeled PEGS**

The 1994/06/09 Mw=8.2 deep Bolivia earthquake

Map showing the PEGS predicted amplitude (using GCMT source parameters), and the 3 broadband stations with lowest noise in the [0.002-0.03Hz] frequency range

Observed (red) and modeled (black) waveforms at the 3 best stations, using an event-specific source time function (SCARDEC method)

Large positive signal observed at LPAZ

Good agreement between observed and modeled PEGS

Vallée and Juhel, 2019

Array observations

The 2018/01/23 Mw=7.9 Gulf of Alaska earthquake

Seismic moment is about 50 times smaller than the Tohoku earthquake, but :

- **Strike-slip mechanism**
- **Excellent coverage provided by USArray (and complemented by the other permanent networks)**

 Δ : USArray Transportable Array (TA)

- \triangle : Alaska Regional Network (AK)
- Δ : other networks (AT, AV, US, II, IU, CN)

During the Gulf of Alaska earthquake, ~250 broadband stations in the Alaska region can contribute to the PEGS detection

Predicted PEGS amplitudes

Vertical PEGS amplitude (at the P-wave arrival time)

Dashed-dotted : +/- 0.2 nm/s²

Dashed : +/- 0.4 nm/s²

The areas with largest predicted PEGS are well sampled by broadband stations… But due to the expected amplitudes (max ~ 0.5nm/s²), direct detection is unlikely

A sensor *i* has a **good detection potential** if :

 At this location, the **expected PEGS is large**

[quantified by the value of *sⁱ (Ti ^P)*, expected amplitude at the P-wave arrival time T_i^P]

 The **instrumental/physical noise is low** [quantified by the signal variance in the pre-event period *σⁱ 2*]

> We show on the right the **13 best sensors in terms of detection potential**, i.e. the 13 first sensors when ordered by **decreasing order of the coefficient** $|s_i(T_i^P)|$ σ_i^2

Single-station observations **are not sufficient for PEGS detection**

Vallée and Juhel, 2019

Strategy for array stacking

1) Change the reference time of the waveforms *aⁱ* from absolute time **to P-wave reference time**

(as maximum expected amplitudes occur at the P-wave arrival)

2) Optimal stack, with **weights equal to** : $S_o(t) = \sum_{i=1}^{N} \frac{s_i(T_i^P)}{\sigma_i^2} a_i(t + T_i^P)$

> Assumes noise to be Gaussian and stationary [*Tyapkin and Ursin, 2005; Robinson, 1970*]

3) Normalization to the the pre-event noise (-> SNR)

The 2010/02/27 Mw=8.8 Maule (Chile) earthquake

Predicted PEGS amplitudes

Waveform stack, in P-wave arrival reference-time, weighted by sensor quality and expected amplitude

PEGS are detected with a high Signal to noise ratio (~7.6)

 $+$

Observed (red) and modeled (black) waveforms at the best located and best quality sensors. Sensor quality is affected by a Mw7 earthquake, 10 hours before in Japan

Summary of the PEGS observations to date

Vallée and Juhel, 2019

Discussion and perspectives

- **In addition to the 2011 Tohoku earthquake, we show 5 earthquakes in the [7.9-8.8] magnitude range with unambiguous PEGS observations**
- For **earthquake types generating efficient PEGS** (strike-slip or deep-focus, rapidly growing source time function) and **recorded in favorable configurations**, **PEGS can be observed for magnitudes lower than 8**
- Based on their **sensitivity to key source parameters** (magnitude, focal mechanism, source time function), the use of **PEGS can become a new powerful tool for earthquake monitoring and anticipated tsunami alert.**
- **In well-instrumented areas with large earthquake hazard (e.g. Alaska, Japan, Cascadia), such approaches can today be tested without additional sensor installation**