
Figure 9: On-fault distribution of dynamic parameters, slip and stress drop for the best 
model inferred by the dynamic inversion. The black and blue lines outline the slip and 
nucleation areas, respectively. 
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Table 1: Runtimes of TPV5 dynamic model simulations on CPU and GPU. The finer 
discretization contains 14.3 times more nodes.

Figure 5: Slip rates, tractions and state variable on the fault in 
positions denoted by triangles in Fig 4. 
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We introduce fast finite difference code FD3D_TSN 
for simulations of  dynamic earthquake rupture 
propagation based on FD3D code by Madariaga et 
al. [1998]. 
Tests using USGS/SCEC benchmarks TPV5 and 
TPV104 [Harris et al., 2018] are performed and 
accuracy assessed by comparison of the results with 
FaultMod code by Barall [2009].
As an example application, we show the result of the 
dynamic inversion of the 2014 Mw6.0 South Napa, 
California, earthquake and compare it with model 
from the kinematic inversion by Gallovic [2016].

Outline

Figure 8: Map of the area showing 
the position of the finite fault 
(rectangle) with color-coded slip 
distribution, NCEDC earthquake 
mechanism (beachball), USGS 
epicentre (star) and stations (circles) 
used for the inversion. 

Figure 6: Comparison of observed seismograms (black) 
with synthetics (green and black for the kinematic and 
dynamic inversion, respectively).

Code description
• 3D staggered grid finite difference method 
[Madariaga et al., 1998]

• Traction at split node implementation of the fault 
boundary condition [Dalguer and Day, 2007]

• Two friction laws implemented: slip weakening, and 
fast velocity weakening rate and state [Rojas et al., 
2009]

• Vertical fault only
• Utilizing antisymmetry of shear components of 
velocity and stress across the fault - FD 
calculations in half of the domain

• Stress imaging implementation of the free surface
• Perfectly matched layers absorbing boundary 
condition 

• Parallelization for GPU using OpenACC directives
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• Vertical strike slip fault
• Slip-weakening friction law
• Homogeneous distribution of 
material and dynamic parameters 
with the exception of three 
prestress heterogeneities

• Parts of the fault rupturing at 
supershear speed

• Nucleation at the central 
heterogeneity

• On 24 August 2014, an Mw 6.0 earthquake struck the Napa area in the north San Francisco Bay 
region. 

• The kinematic finite source inversion was done by Gallovic [2016] with variance reduction of the 
best model of 0.61. 

• Our dynamic inversion [Gallovic et al., 2019] finds spatial distributions of prestress and parameters 
of the slip-weakening friction law - static friction coefficient and characteristic weakening distance 
Dc.The best-fitting model with variance reduction of 0.55 is shown.

• The same set of low frequency (0.05-0.5 Hz) data was used in the kinematic and the dynamic 
inversions.

• Synthetic seismograms are calculated using AXITRA code [Bouchon,1981].
• Small size of the fault (15x10km) and its geometry (dip 82°) make the earthquake suitable for the 

dynamic inversion.
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Runtimes for TPV5

Figure 3: Slip rates and tractions on the fault in positions 
denoted by triangles in Fig 2. 

Figure 2: Rupture time 
contour plot for the TPV5 
benchmark. Blue squares 
denote positions of the 
predefined stress 
heterogeneities. Results of 
FD3D_TSN (black line) and 
FaultMod (red line) are 
practically identical, while 
FD3D (dashed line) shows 
significantly lower rupture 
speed.

Figure 4:Rupture 
time contour plot for 
the TPV104 
benchmark. 

Figure 7: Comparison of the rupture propagation 
snapshots for the best models from the dynamic (left) and 
kinematic (right) inversions.

• Vertical strike slip fault
• Fast velocity weakening friction law 
• Velocity weakening fault surrounded by velocity 
strenghtening layer

• All initial parameters homogenous in the velocity 
weakening area.

• Nucleation by imposing a time dependent 
perturbation in traction in the centre of the fault.
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Figure 1: The linear slip-
weakening friction law
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