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Towards Multiscale Fault (zone) Modeling

Realistic fault
networks consist of
intersections and
off-fault structures;
intersecting faults
are dealt with
“cross-link”
constraint method;
off-fault structures
are conceptualized
as Eshelby’s
inclusions.



Cross-link constraint method

To model intersecting
faults:

Place cross-link
node pairs at the
fault intersections;
fault orientation
vectors at the
cross-link pairs
update according to
intersection offset
scenarios, no need
to change constraint
matrix.

[Meng and Hager 2019,
in review]
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Cross-link illustration
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t(i)x t(i)z 0 0 −t(i)x −t(i)z 0 0
n(i)x n(i)z 0 0 −n(i)x −n(i)z 0 0
0 0 t(i)x t(i)z 0 0 −t(i)x −t(i)z
0 0 n(i)x n(i)z 0 0 −n(i)x −n(i)z

 ·



u1x
u1z
u2x
u2z
u3x
u3z
u4x
u4z


=


d(i)

l(i)

d(i)

l(i)

 , for i = 1 or 2,



Rewrite constraint equations:
t (i)x t (i)z 0 0
n(i)

x n(i)
z 0 0

0 0 t (i)x t (i)z

0 0 n(i)
x n(i)

z

 ·
[

I 0 −I 0
0 I 0 −I

]
·


u1
u2
u3
u4

 =


d (i)

l(i)

d (i)

l(i)

 , for i =

1 or 2.
The constraint coefficient matrix is fixed, regardless of in which
direction the fault shall slip.

[
I 0 −I 0
0 I 0 −I

]
·


u1
u2
u3
u4

 =


t (i)x n(i)

x 0 0
t (i)z n(i)

z 0 0
0 0 t (i)x n(i)

x

0 0 t (i)z n(i)
z

 ·


d (i)

l(i)

d (i)

l(i)

 , for i =

1 or 2.
The code compares the slip tendency in two directions to
determine the RHS.



Example results, modified SCEC 14

When the intersection is
offset by fault 1:

Slip on fault 2 is
discontinuous at the
intersection;
two dark lines
appear on the last
plot.



Modified SCEC 15

When the intersecion is
offset by fault 2:

Slip on fault 1 is
terminated at the
intersection;
only one dark line
appears on the last
plot.



(Equivalent) Eshelby’s inclusion problems

Displacement and
stress around a
inclusion subject to
unconstrained inelastic
transformation are
given by Eshelby’s
solution;
elastic perturbations
around an ellipsoidal
inhomogeneity excited
by uniform loading can
be resolved as an
equivalent inclusion
problem.



Interactive inhomogeneities

For single inclusion,
ui(x) = 1

8π(1−ν)

(
ψ,jliε

∗
jl − 2νε∗mmφ,i − 4(1 − ν)ε∗ilφ,l

)
,

σij(x) =

{
Cijkl(Sklmnε

∗
mn − ε∗kl), interior,

CijklDklmn(x)ε∗mn, exterior.
where S and D are interior and exterior Eshelby’s tensors
respectively; and εεε∗ is effective eigenstrain, where
(C − ∆CS)εεε∗ = ∆Cεεε∞.
For n inclusions, Meng [2019b, to be submitted]
approximates the eigenstrain εεε∗ of i-th inclusion as
(C − ∆CiSi)εεε∗i ≈ ∆Ci

(
εεε∞ +

∑n
j 6=i Dijεεε∗j

)
,

which is solved directly after rearranging the unknowns.



Eshelby’s solution in truncated space by Esh3D

Cmparison between Esh3D
and purely numerical
method for three body
problem:

Esh3D only needs to
make grid for host
matrix, and considers
inclusions analytically.
Purely numerical model
has both inclusions and
hots matrix discretized.
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Esh3D (hybrid) vs analytic vs numeric
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The Esh3D code,
for truncated domain, numerically impose traction
(Neumann) and displacement (Dirichlet) boundary
conditions [Meng, 2019a];
for whole space, does not require numerical grid;
is considerably inexpensive compared to the purely
numerical model.
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Conceptual fault zone inclusions

Define a fault zone;
place ellipsoidal
inclusions, with different
elastic moduli, in the
fault zone;
the shape, orientation
and properties of the
inclusions
conceptualize off-fault
heterogeneous
structures.
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Eshelby’s strain in FE weak forms

[K] =
∑nGauss

j

B(j)T CD∗(j) B(j)(det Jw)(j)︸ ︷︷ ︸
total disp→ strain

 .
D∗(·) consists of exterior Eshelby’s tensors [Meng et al
2019, to be submitted].



Modified SCEC 205 problem result

Off-fault fracture effects are
sensitive to rupture modes:

Fault-parallel fractures
appear to promote
mode-III rupture;
fault-perpendicular
fractures appear to retard
mode-II rupture. +
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Horizontally (mode-II), “para” and “ref” stay closely, while
“perp” falls behind;
vertically (mode-III), “ref” and “perp” stay closely, while
“para” leads;
localized mode-III rupture makes “para” advance quicker.



Frequency domain

first two rows are sampled on the horizontal (mode-II) line;
third row is sampled on the vertical (mode-III) line.
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Conclusion

We developed a novel method to efficiently model complex fault
(zone) across aseismic and seismic cycles, where

Intersecting faults are dealt with cross-link constraint
method;
off-fault inhomogeneity is dealt with Eshely’s inclusion
method.

Static Eshelby’s inclusion source can be coupled with Okada’s
fault source (Esh3D) for joint geodetic data inversion.
Source code:

https://github.com/Chunfang/Esh3D

https://github.com/Chunfang/defmod-swpc

https://github.com/Chunfang/Esh3D
https://github.com/Chunfang/defmod-swpc

