

- Single layer (h=25 m) with large impedance contrast
	- 2 velocities : $B_1 = (200 \text{ m/s} (2 \text{ Hz}), 100 \text{ m/s} (1 \text{ Hz})$
	- $Qs = 25 (s = 2\%)$

- 3 types: (quasi)Dirac, Ricker (tuned frequency), quasiharmonic (20 cycles, tuned frequency)
- 2 amplitudes : $F_1 = 1N$, $F_{2,R} = 3$ kPa * 2πR / 360
- *Erlingsson (1996):* external surface load for people jumping around a stage estimated at 3 kPa
- *Linthorne (2001)* : vertical force from a jumper: around 1 to 1.5 kN \rightarrow realistic density of 2-3 people / m² $R = 100 \text{ m}$ \rightarrow F_{2,100} = 5.24 kN $R = 1000 \text{ m}$ \rightarrow $F_{2,1000} = 52.4 \text{ kN}$

C – Source : waveforms and amplitude

D. Computation: Discrete wavenumber (Bouchon, 1981; Hisada, 1994, 1995)

From rock concerts and soccer matches to in-situ, non-linear experiments: a numerical study of extreme, man-induced ground vibrations

P.-Y. Bard¹, T. AlKhally^{1,2}, M. Wathelet¹, B. Guillier¹, C. Cornou¹ & E. Chaljub¹

Hisada Y. (1994, 1995) An Efficient Method for Computing Green's Functions for a Layered Half-Space with Sources and Receivers at Close Depths BSSA: Part 1 Vol. 84 No.5, pp. 1456-1472; (Part 2) Vol. 85, No. 4, pp. 1080-109 Linthorne, N.P., 2001. Analaysis of standing vertical jumps using a force platform. Am. J. Phys., Vol. 69, No. 11, November 2001, p. 1198-1204. doi: 10.1119/1.1397460

¹ ISTerre, UGA/CNRS/IRD/IFSTTAR, University Grenoble-Alpes, France**) ²** Lebanese University, Faculty of Engineering

BACKGROUND

Main references

Al Khally, T. (2018) Time reversal and soil non-linearity, Master Internship report, Lebanese University / ISTerre, 51 pages

Bouchon M. (1981) A simple method to calculate green's functions for elastic layered media *Bulletin of the Seismological Society of America, Vol 71, No 4, pp 959-971, August 1981*

Denton, P., Fishwick, S., Lane, V., & Daly, D. (2018). Football Quakes as a Tool for Student Engagement. *SRL 89-5, 1902-1907*

Erlingsson & Bodare (1996) Live load induced vibrations in Ul!evi Stadium dynamic soil analysis *SDEE 15 (1996) 171-188*

Erlingsson S. (1999) Three-dimensional dynamic soil analysis of a live load in Ullevi Stadium *SDEE 18 (1999) 373–386*

Contact : pierre-yves.bard@univ-grenoble-alpes.fr

- **1. Rock concert in Ullevi stadium (Gotheborg, Sweden)**
- Damaged during a B. Springsteen concert on 8 June 1985 (Repair $cost: 4-5 M\epsilon$)
- tens of thousands of people rythmically jumping on the stadium, frequency coincidence between clayey soil, jumping frequency, and structural modes
- Estimated displacements and velocities (H and V : up to 2.0-2.5 mm, and beyond 2 cm/s, respectively
- **2. World Cup 2018, Mexico 1 – Germany 0**
- Triggering of a fake earthquake warning in Mexico City (ABC News, 17/06/2018) due to exulting Mexican fans

Examples of large ground) vibrations in the near field of large crowd gatherings

OBJECTIVES : HOW EXTREME + APPLICATIONS ?

Examples of detectable long distance seismological signals

- **1. Barça – PSG "remontada", Champion's league, 2017** Camp Neu recordings
- **2. World Cup 2018 Final, France 4 – Croatia 1** Goals detected throughout France and Croatia

Average seismic energy on 74 stations of the French RESIF network in the 2-3 Hz band

Predicted waveforms along the receiver line (quasi-Dirac impulse)

Impact of source waveform (central receiver)

Summary of results : peak displacement and velocity values at central receiver

Radius	Model	Dirac 1N		Ricker 1N		Harmonic 1N		Harmonic 3kPa	
		PGD (μ m)	PGV (mm/s)	PGD (μ m)	PGV (mm/s)	PGD (mm)	PGV (mm/s)	PGD (cm)	PGV (m/s)
100 m		12.6	1.25	20.37	0.63	0.0675	1.7	35.3	8.9
	$\overline{2}$	26.3	1.5	70.21	1.1	0.208	2.7	109.1	14.1
1 km		0.025	$0.86 10^{-3}$	0.177	$3.66 10^{-3}$	$1.51 10^{-3}$	0.037	8.47	1.96
	$\overline{2}$	0.043	$1.04 10^{-3}$	0.515	$5.09 10^{-3}$	$0.51 10^{-3}$	$7.3 \; 10^{-3}$	2.85	0.38

APPLICATIONS : IN-SITU NON-LINEAR TESTING

These numerical tests thus open the way for investigating the feasability of an instrumental device to perform in-situ non-liner tests. The basic idea is to use a set of active sources installed on a small-aperture circle around the considered site, and to try to focus the energy in order to generate large enough strains at a target depth within a borehole at the center of the circle (sketch below).

Active near sources: Numerical experiment

Introduction Soil

Source functions in the time (left) and frequency (right) domains: blue = quasi Dirac, red = Ricker, green = harmonic

Conclusion / discussion

Jumping crowds arranged along a circle can therefore generate very large motion in the very center (displacement and velocities beyond several cm and several tens of cm/s, respectively). The motion at the next receiver (10 or 100 m distant for models 1 and 2, respectively), not shown here) is between 3 and 6 times smaller, which remains important and well beyond the acceptable comfort limits. This is due

- a) the efficient excitation of Rayleigh waves by surface sources,
- b) their high energy due to the coincidence of jumping frequencies with Airy phase,
- c) their focusing in the central part.

The reached values indicate nevertheless that the linear (visco-)elasticity assumption will not hold at least in the central part, and that the actual values should be lower because of increased damping,

Example computations for a set of 12 vertical sources along a 10 or 20 m radius for model 1 above.

Preliminary computations (AlKhally, 2018) | | Time focusing with time reversal techniques

In addition to the spatial focusing, the use of time reversal techniques could result in a time domain focusing of the strain at a given depth in the borehole, potentially allowing to reach at least the onset on non-linearities with only limited energy for the active sources. The Table below lists the force levels F_{N1} that are needed to reach a 10⁻⁴ strain level at shallow depth (1-25 m) for a set of 12 vertical, radial and tangential sources along a 10 m radius circle, without and with time reversal techniques