

From rock concerts and soccer matches to in-situ, non-linear experiments: a numerical study of extreme, man-induced ground vibrations

P.-Y. Bard¹, T. AlKhally^{1,2}, M. Wathelet¹, B. Guillier¹, C. Cornou¹ & E. Chaljub¹

¹ ISTerre, UGA/CNRS/IRD/IFSTTAR, University Grenoble-Alpes, France)

² Lebanese University, Faculty of Engineering

BACKGROUND

Examples of large ground) vibrations in the near field of large crowd gatherings

- 1. Rock concert in Ullevi stadium (Gotheborg, Sweden)
- Damaged during a B. Springsteen concert on 8 June 1985 (Repair cost : 4-5 M€)
- tens of thousands of people rythmically jumping on the stadium, frequency coincidence between clayey soil, jumping frequency, and structural modes
- Estimated displacements and velocities (H and V : up to 2.0-2.5 mm, and beyond 2 cm/s, respectively
- World Cup 2018, Mexico 1 Germany 0 2.
- Triggering of a fake earthquake warning in Mexico City (ABC News, 17/06/2018) due to exulting Mexican fans

Examples of detectable long distance seismological signals

- Barça PSG "remontada", Champion's league, 2017 Camp Neu recordings
- World Cup 2018 Final, France 4 Croatia 1 Goals detected throughout France and Croatia

Average seismic energy on 74 stations of the French RESIF network in the 2-3 Hz band

OBJECTIVES : HOW EXTREME + APPLICATIONS ?

B – Underground structure: 2 models

- Single layer (h=25 m) with large impedance contrast
 - 2 velocities : B₁ = (200 m/s (2 Hz), 100 m/s (1 Hz)
 - Qs = 25 (ς =2%)

Model	1	2			
Thickness h	25	m			
ρ1	1900	kg/m ³			
ρ ₂	2500 kg/m ³				
B ₁ (m/s)	200 100				
β ₂ (m/s)	10	00			
Q _{S1} / <i>ς</i> ₁ (%)	25 <i>(2%)</i>	25 <i>(2%)</i>			
f _o (Hz)	2	1			
Airy phase (Hz)	3.9	2.1			

Results

Predicted waveforms along the receiver line (quasi-Dirac impulse)

Impact of source waveform (central receiver)

Summary of results : peak displacement and velocity values at central receiver

C – Source : waveforms and amplitude

- 3 types: (quasi)Dirac, Ricker (tuned frequency), quasiharmonic (20 cycles, tuned frequency)
- 2 amplitudes : $F_1 = 1N$, $F_{2,R} = 3$ kPa * $2\pi R / 360$
- Erlingsson (1996): external surface load for people jumping around a stage estimated at 3 kPa
- Linthorne (2001) : vertical force from a jumper: around 1 to 1.5 kN \rightarrow realistic density of 2-3 people / m² $R = 100 \text{ m} \rightarrow F_{2,100} = 5.24 \text{ kN}$
 - R = 1000 m \rightarrow F_{2.1000} = 52.4 kN

D. Computation: Discrete wavenumber (Bouchon, 1981; Hisada, 1994, 1995)

Airv Phase

Frequency (Hz)

Source functions in the time (left) and frequency (right) domains: blue = quasi Dirac, red = Ricker, green = harmonic

Radiu		Model	Dirac 1N		Ricke	er 1N	Harmonic 1N		Harmonic 3kPa	
	Radius		PGD (µm)	PGV (mm/s)	PGD (µm)	PGV (mm/s)	PGD (mm)	PGV (mm/s)	PGD <mark>(cm)</mark>	PGV (m/s)
	100 m	1	12.6	1.25	20.37	0.63	0.0675	1.7	35.3	8.9
	100 m	2	26.3	1.5	70.21	1.1	0.208	2.7	109.1	14.1
Γ	1 400	1	0.025	0.86 10 ⁻³	0.177	3.66 10 ⁻³	1.51 10 ⁻³	0.037	8.47	1.96
	T KIII	2	0.043	1.04 10 ⁻³	0.515	5.09 10 ⁻³	0.51 10 ⁻³	7.3 10 ⁻³	2.85	0.38

Conclusion / discussion

Jumping crowds arranged along a circle can therefore generate very large motion in the very center (displacement and velocities beyond several cm and several tens of cm/s, respectively). The motion at the next receiver (10 or 100 m distant for models 1 and 2, respectively), not shown here) is between 3 and 6 times smaller, which remains important and well beyond the acceptable comfort limits. This is due

- a) the efficient excitation of Rayleigh waves by surface sources,
- their high energy due to the coincidence of jumping frequencies with Airy phase, b)
- their focusing in the central part. c)

The reached values indicate nevertheless that the linear (visco-)elasticity assumption will not hold at least in the central part, and that the actual values should be lower because of increased damping,

These numerical tests thus open the way for investigating the feasability of an instrumental device to perform in-situ non-liner tests. The basic idea is to use a set of active sources installed on a small-aperture circle around the considered site, and to try to focus the energy in order to generate large enough strains at a target depth within a borehole at the center of the circle (sketch below).

APPLICATIONS : IN-SITU NON-LINEAR TESTING

Preliminary computations (AlKhally, 2018)

Frequency (Hz)

Example computations for a set of 12 vertical sources along a 10 or 20 m radius for model 1 above.

epsxx										
2E	\\	1	I	I	Ι	I	I	I	Ι	-
-Z	<u> </u>									
0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
epsyy										
2E	A '	'	1	1	I	1	I	1	I	-
-2 <u>–</u>	- W Vr									
0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
1×1	0-6				epszz					
0	Min								1	
-1	V									
0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
10×1	0-12				epsxy					
5-	, Mar	'	'		'	'		'	1	
0	<u> </u>									
0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
_ ×1	0-8				epsxz					
ğ[~~~//~~~~	· · ·	I	1	I	1	I	1	I	
19	<u>\</u>									
0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
5×1	0-8				epsyz					
ğ	~~~{}/~~~	····							'	
īd⊑	<u> </u>		0.0					1.0	1.0	
0	0.2	0.4	0.6	0.8	L time [c]	1.2	1.4	1.6	1.8	2
					une [s]					
	Γ∠	149 ×	10^{-7}	79	× 10⁻	15	-1.07	× 10 ⁻	-7ק	
			-15			-7		× 10	7	
$\underline{\epsilon} = [7.9 \times 10^{-15} 4.49 \times 10^{-7} -1.07 \times 10^{-7}]$										
-	- L_	$1.07 \times$	10^{-7}	-1.(7×10^{-10})-7	-9.68	$\times 10^{-1}$	-7	
Strains waveforms and values obtained at 5m depth for a set										
of 12 1N averai Direct vertical forecas alore a 10 m radius similar										
of 1	12 IN (quası-L	Jirac ve	ertica	i forces	s alo	ong a 10) m ra	aius ci	rcie

<u>Time focusing with time reversal techniques</u>

In addition to the spatial focusing, the use of time reversal techniques could result in a time domain focusing of the strain at a given depth in the borehole, potentially allowing to reach at least the onset on non-linearities with only limited energy for the active sources. The Table below lists the force levels F_{NL} that are needed to reach a 10⁻⁴ strain level at shallow depth (1-25 m) for a set of 12 vertical, radial and tangential sources along a 10 m radius circle, without and with time reversal techniques

Earca direction	Strain lovel	Source time function	Sensor depth (m)						
Force direction	Strain level	Source time function	0	5	10	15	20	25	
	o − 10-4	Quasi-Dirac source	236	103	152	316	525	1150	
Vortical	$\varepsilon_{zz} = 10^{+1}$	With time reversal	30	19	72	126	107	156	
vertical	ε _{xz} = 10 ⁻⁴	Quasi-Dirac source	734	932	4012	9999	16405	26946	
		With time reversal	127	248	419	1687	4620	12146	
	ε _{zz} = 10 ⁻⁴	Quasi-Dirac source	174	197	217	240	322	689	
Dadial		With time reversal	91	29	21	70	183	349	
Radiai	o − 10-4	Quasi-Dirac source	5778	2632	6034	6831	7327	11622	
	$\varepsilon_{xz} = 10^{-1}$	With time reversal	66	922	413	388	1453	4433	
Tangantial	ε _{xz} = 10 ⁻⁴	Quasi-Dirac source	4973	1462	1823	3062	4429	8185	
		With time reversal	111	275	87	215	1015	4375	
Force levels (in Newtons) required to reach a 10 ⁻⁴ strain level for a set of 12 excitators installed along a 10 m radius circle									
	(From AlKhally, 2018)								

Main references

Al Khally, T. (2018) Time reversal and soil non-linearity, Master Internship report, Lebanese University / ISTerre, 51 pages

Bouchon M. (1981) A simple method to calculate green's functions for elastic layered media Bulletin of the Seismological Society of America, Vol 71, No 4, pp 959-971, August 1981

Denton, P., Fishwick, S., Lane, V., & Daly, D. (2018). Football Quakes as a Tool for Student Engagement. SRL 89-5, 1902-1907

Erlingsson & Bodare (1996) Live load induced vibrations in Ullevi Stadium dynamic soil analysis SDEE 15 (1996) 171-188

Erlingsson S. (1999) Three-dimensional dynamic soil analysis of a live load in Ullevi Stadium SDEE 18 (1999) 373–386

Hisada Y. (1994, 1995) An Efficient Method for Computing Green's Functions for a Layered Half-Space with Sources and Receivers at Close Depths BSSA: Part 1 Vol. 84 No.5, pp. 1456-1472; (Part 2) Vol. 85, No. 4, pp. 1080-1093, August 1995 Linthorne, N.P., 2001. Analaysis of standing vertical jumps using a force platform. Am. J. Phys., Vol. 69, No. 11, November 2001, p. 1198-1204. doi: 10.1119/1.1397460

Contact : pierre-yves.bard@univ-grenoble-alpes.fr