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ABSORPTION CORRECTION FOR COMPUTATIONS OF A SEISMIC 
GROUND RESPONSE 

BY J. ZAHRADNiK, J. JECH, AND P. MOCZO 

In computations of synthetic seismograms for purposes of ground-motion studies, 
the absorption should be always taken into account. Otherwise, serious errors in 
the seismic hazard estimation can be made. Three main approaches for including 
absorption into synthetic seismograms are: (i) by complex velocities in the frequency 
domain, (ii) through stress-strain relations and equations of motion in the time 
domain, or (iii) by dissipation operators applied to the perfectly elastic solutions in 
the time or frequency domain. For the latter method, the wave field must be 
decomposed into elementary waves of known travel times. 

In Zahradnik e t  al. (1990), an alternative method (iv) has been suggested recently, 
i.e., the approximate absorption correction similar to (iii), but applicable to the 
wave fields not decomposed into elementary waves. A need for such an approach is 
quite evident. For example, if the finite-difference method is used for generating a 
suite of synthetic ground motions with various absorption models, the (expensive) 
finite-difference code may be executed only once, without absorption, and then the 
approach (iv) may be repeatedly used. This idea has been put forward before (e.g., 
Boore et  al., 1971; Zahradnik and Hron, 1987; Vidale and Helmberger, 1988). The 
intention of this note is to clarify some computational aspects of that simple 
technique (iv) and to prove its efficiency for ground-response analyses. 

A P P R O X I M A T E  A B S O R P T I O N  C O R R E C T I O N S  

Consider the S H  wavefield and the absorbing medium. Let the medium be 
heterogeneous, i.e., the phase velocity c ( f )  is dependent on spatial coordinates, but 
restricted to spatially constant Q (f). Assume, for now, a single elementary wave, 
whose waveform at ~ = 0 is g ( t ) .  Here ~ denotes the travel time -r = f d s / c  (fr) along 
a ray. Due to absorption the waveform at ~ ~ 0 becomes 

p ( t )  = D ( t ;  r)  * g ( t  - ~), (1) 

where D ( t ;  ~) is the dissipation operator given by equations (34) through (37) of 
Mfiller (1983). Now consider a medium in which, instead of the single wave, the 
nonabsorbing response consists of N superimposed elementary waves 

N 

r ( t )  = Y~ g j ( t  - r~). (2) 
j = l  

Then the absorbing response is 

p ( t )  = D ( t  - t ' ;  ~-j)gj(t '  - -rj) d t ' ,  (3) 

not explicitly expressed via the nonabsorbing response r ( t ) .  The application of 
equation (3) requires a knowledge of all gj and ~j, i.e., the wave field composition 
must be known. If, however, the parameter 72 of the operator D in equation (3) is 
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substituted by a function of t ' ,  independent of j, e.g., t '  - Tin, we may write 

p(t )  = D ( t -  t'; t '  - Tm)r(t ') dt ' .  (4) 

Hence we get an approximate absorption correction applicable a posteriori to the 
perfectly elastic response r(t) not decomposed into elementary waves, as desired. 
For reasons explained in Zahradnik et al. (1990) we use in (4) the parameter 
t '  - Tin, where T,~ denotes the time at which gj(t) takes its maximum. If this time 
is different for the individual gj, the Tm is averaged from all of them. The shorter is 
the duration of the excitation (hence also that ofgj), the better is the approximation 
(4), being quite exact for the impulse excitation. Realistic earthquake excitations 
can be convolved with the impulse response. 

Consider the absorbing medium described by the causal power-law Q model of 
Miiller (1983): 

Q(/) = . (5) 

Here [r is a reference frequency, and ~ characterizes a particular frequency depend- 
ence of the quality factor Q. 

For 7 = 1 (linear Q) the approximate absorption correction of equation (4) gives 
a simple exponential windowing of the nonabsorbing response r (t) 

p( t  ) ~- e x p { -  ~-(t -q Tm).}r(t ), (6) 

where q = Q(fr)/fr. For ~ = 0 (constant Q) we get 

p(t )  ~- F-I (P( f ) ) ,  

P(/)--fr(t')exp{ zc/(t'-Tm)[Q 1 --~2i In (f)]} 
× exp{- 2~rift'} dt ' ,  

(7a) 

(7b) 

where F -1 denotes the inverse Fourier transform. Some attention should be paid to 
an efficient numerical evaluation of P( f )  (see the Appendix). 

While our approach is based on equation (4) in the time-domain, an alternative 
frequency-domain approach can be also used (D. C. Witte, written comm.). Since 
the multiplication in equation (4) transforms into a frequency-domain convolution, 
and since the dissipation operator D is slowly varying with time, the convolution 
can be restricted to a narrow frequency band. Hence, a good numerical efficiency 
can be expected, too. 

A CANONICAL BASIN PROBLEM 

Here we verify the approximate absorption corrections. We compare them against 
methods in which complete interference S H  wave fields are computed by the finite- 
difference method with absorption exactly included in the time-domain equation of 
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motion. At the same time we address an important practical problem: how do 
different absorption corrections affect synthetic wave fields in studies of near- 
surface geological effects upon earthquake ground motions? 

We use the well known test example of the sedimentary basin, first introduced 
by Boore et al. (1971) and presented in Figure 1 (see also Moczo et al., 1987, and 
the references therein). The shear-wave velocity takes constant values inside the 
basin (fls) and in the underlying rock (~r): f~s = 700 m/sec, ~r = 3500 m/sec. The 
quality factor Q (f) is constant throughout the whole model. Two absorption models 
are considered: the linear-Q model, Q = 36.6 f (i.e., Q(fr) = 20, fr = 0.54 Hz, where 
fr is the predominant frequency of the excitation signal), and the constant-Q model 
Q = 20. The basin is excited by a plane SH wave, incident vertically from below. At 
the initial time T = 0, the incident wavefront is 100 m below the deepest point of 
the basin. The excitation signal is the Ricker wavelet of duration T = 4 sec; hence 
Tm = 2 sec. Five solutions for this model, corresponding to the six receivers of 
Figure 1, are compared in Figure 2. 

The approximate solution for the constant-Q model is computed in two steps. In 
the first step the perfectly elastic response r(t) is found by the finite-difference 
method. The second step consists of applying equations (7a) and (7b). We call this 
solution absorption correction 1 and denote it AC1. 

The reference solution for the constant-Q model is computed by a time-domain 
technique based on Emmerich and Korn (1987) and Moczo (1989). The absorption 
is described by a partial differential equation coupled with a system of ordinary 
differential equations. These equations are solved by the finite-difference method. 
The denotation is EK. 

The approximate solution for the linear-Q model is again computed in two steps. 
First, the perfectly elastic response r(t) is found by the finite-difference method. 
Second, the approximate absorption correction (6) is applied to the response r(t). 
This solution is called absorption correction 2 and denoted AC2. 

The reference solution for the linear-Q model is provided by the finite- 
difference method as a whole. In this case the absorption is simply and quite 
accurately included in the time-domain equation of motion through an additional term 
2~p (fr/Q(fr))Ou/Ot. Hence the denotation AT. 

The perfectly elastic response r(t) is included in Figure 2 as the trace denoted 
ELASTIC. 

As evident from Figure 2, the agreement between the exact and approxi- 
mate absorption corrections is very good. In particular, the agreement for the 

[m] -2  -1 g +1 +2 
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BASEMENT 3500 m/s 330H k g / ~  

FIa. 1. Model of sedimentary basin used for checking the absorption corrections of the present paper 
by the finite-difference method in Figure 2. The receivers are denoted by numbers 1 to 6. The shear- 
wave velocities and densities are also shown. 
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FIG. 2. A compar i son  of the  absorb ing-medium response  p (t) computed  by four independen t  me thods  
for six receivers of  the  bas in  model  in Figure 1. E K  and  AT: the  reference solut ions for -y = 0 and  ~ = 1, 
respectively; AC1 and  AC2: the  approximate solut ions of th is  paper  for ~ / =  0 and  -y = 1, respectively. 
E L A S T I C  denotes  the  perfectly elastic response  r (t). 

constant-Q model, complicated by dispersion, is as good as that for the linear-Q 
model, where the dispersion is absent. 

Naturally, the constant-Q and the linear-Q model provide different results. 
However, in many seismic-response analyses of near-surface geological structures, 
where the interest is in gross features of ground motions and not in details (mostly 
because of the data incompleteness), the differences between these two results are 
unimportant. Then the linear-Q model is formally preferable because of its ex- 
tremely low computer-time requirements. Additional reasons for the linear Q, viz. 
the observational evidence, is beyond the scope of this note. It is also to mention 
that the linear-Q model with a given value of q is equivalent to the constant-Q 
model and a narrow spectral band centered at frequency fr = Q/q. 

Although we concentrated on the constant-Q and the linear-Q models, the other 
power-law Q models can be included in equation (4) easily, thus yielding approximate 
corrections analogous to (7a) and (7b). 

The cost we pay for simplicity of the present method is the restriction to S H  
waves and spatially constant Q. The latter assumption seems to be most critical if 
the Q value typical for sediments is assumed also for the underlying rocks. However, 
even in situations like that, the present method can give quite good results in 
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practical applications mentioned above, provided the excitation wavefront is placed 
close to the sedimentary structure at the initial time. Such an arrangement,  together 
with a relatively large rock velocities, makes the travel time beneath the sediments 
very small. Therefore, the influence of the improperly modeled Q in the rock is 
small. 

CONCLUSIONS 

The practical significance of the approximate absorption correction, suggested in 
this paper, is threefold. (a) The correction needs a minimum programming effort 
and it is very fast. (b) The correction is independent of the method used for 
computing the perfectly elastic response. In particular, any method providing the 
complete wave field, not  separated into elementary waves, can be used. (c) Once the 
perfectly elastic response has been computed, e.g., by the finite-difference method, 
it can be repeatedly corrected with several absorption models or several Q values. 
A considerable saving of computer  time can be achieved in this way as compared to 
repeated computat ions including the absorption directly. Such repeated absorption 
corrections are very often needed in practice, since absorption parameters  of 
geological structures are rarely known well. 
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APPENDIX 

The integral in equation (7) can be written as 

C 
P ( f )  = J ( R e h ( t ' ,  f)  + i Im  h( t ' ,  f))exp{-2~rift '}  dr' .  (A1) 

It cannot  be computed in a single run of the fast Fourier t ransform (FFT), since 
the function appearing in front of the exponential depends on [. At a fixed frequency, 
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say f, we must compute two integrals of the type 
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I ( f )  = f k ( t ' ,  T)exp{-2~iTt'} d t ' ,  (A2) 

where k stands for Re h, or Im h. The calculation should be done for f---  0, 
Af, . . .  etc., up to a maxium significant frequency, and padded by zeros up to the 
Nyquist frequency. An efficient way of doing that is the following recursive formula 
(Dobe~, 1982). 

Consider discrete values of xl  = k(O, -f), x2 = k ( A t ,  -f), . . . , xn = k ( ( n  - 1)At, 7-) 
at equal time intervals At, those used in computing the nonabsorbing response. If 
now we introduce the coefficients b_l -- bo = 0, and 

bi = bi_12 cos(2~TAt) - bi-2 + Xn+l-i, i = 1, 2 , . . . ,  n, (A3) 

then 

R e  I ( - f )  = bn - bn_lcos(2~-TAt). 

I m  I ( - f )  = -bn-lsin(2rTAt),  (A4) 

This method of computing P ( f )  was numerically tested in Zahradnik et  al. (1990). 
We have compared this approach to that one in which I ( f )  is computed by repeated 
FFT's (one FFT for each f) ,  and a single spectral value (at f )  is taken from each 
run. The computer times of the recursive formula (A4) were found roughly 15 times 
shorter than the repeated FFT's. 
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