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Dúbravská cesta 9, 842 28 Bratislava, Slovak Republic.

E-mail: geofpemo@savba.sk

Received 6 July 1999
Revised 15 January 2000

We present a tutorial introduction to the 3-D finite-difference modeling of seismic ground motion
in elastic and viscoelastic media with special emphasis on its computational efficiency. We consider
four basic types of the finite-difference schemes — the displacement-stress, displacement-velocity-
stress and velocity-stress schemes on a staggered grid, and displacement scheme on a conventional
grid. Their memory requirements in the case of perfectly elastic medium, elastic medium with apos-
teriori approximate attenuation correction, and realistic viscoelastic medium are reviewed. We also
present application of the powerful optimization techniques to the 3-D fourth-order displacement-
stress and displacement-velocity-stress modeling in the case of viscoelastic medium whose rheology
is based on the generalized Maxwell body. Description of a medium using material cell types and
use of a discontinuous grid with combined memory optimization makes it possible to simulate
earthquake ground motion in realistic large-scale models.

1. Introduction

Three-dimensional (3-D) numerical modeling of seismic wave propagation and earthquake

ground motion has become a necessary tool in a majority of seismological investigations

and seismic exploration. There is a large variety of computational methods that differ one

from another by range of applicability, accuracy, and efficiency. The existence of many

computational methods indicates that, in fact, none of them is really universal — applicable

to all medium-wavefield configurations with sufficient accuracy and efficiency.

In modeling earthquake ground motion it is often necessary to include a point disloca-

tion source or realistic fault model, complex heterogeneity of the medium (that includes

sharp interfaces, large velocity contrasts and high Poisson’s ratio), and topography of the

free surface. The finite-difference, finite-element, boundary-integral, discrete-wavenumber,

spectral-element and boundary-element methods are good examples of different approaches

to model earthquake ground motion. They can be divided into three groups — boundary,
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domain and hybrid methods. As Takenaka et al.1 pointed out, the boundary methods are

more accurate while domain methods are applicable to more complex (i.e., more realistic)

models. In the 3-D case, boundary methods, due to their computational cost, are usually

limited to one or two homogeneous layers. Combining two or more methods in the hybrid

modeling allows overcoming limitations of the single method. For a relatively detailed review

of many recent methods we refer to the article by Takenaka et al.1 A concise overview of

the methods can be found in the paper by Komatitsch and Tromp.2

Finite-difference method, one of the best-known domain methods, has been recognized

for almost three decades as a powerful method for numerical simulation of seismic wave

propagation and earthquake ground motion. The reason for it is the relative simplicity and

robustness of the method. The finite-difference method is applicable to complex media and

easy to implement in computer codes.

The importance of the finite-difference method has been recently proven by its role in

three-dimensional modeling of earthquake ground motion in large sedimentary basins —

e.g., see Refs. 3–7. Very recently, the finite-difference method played the key role in the

Northridge and Kobe simultaneous simulation experiments (e.g., see Ref. 8).

There are two well-known drawbacks of the finite-difference method. One is the principal

difficulty to implement boundary conditions on geometrically complex interfaces, especially

the traction-free condition on the free-surface topography. Since this is an inherent problem

of the finite-difference method, one reasonable way to overcome it is to combine the finite-

difference method with the finite-element method.9

The second problem arises when the finite-difference method is applied to large-scale

models as, e.g., Los Angeles or Osaka sedimentary basins. In such cases the method requires

very large computer memory and time. This imposes serious limits on application of the

finite-difference method.

Thus, it is obvious that memory optimization, sophisticated encoding and parallelization

are necessary to facilitate further progress in the finite-difference modeling of earthquake

ground motion.

The purpose of this article is to provide a tutorial introduction into the 3-D finite-

difference modeling of earthquake ground motion with emphasis on computational efficiency

of four basic types of the finite-difference schemes and their optimization. Special attention

is paid to incorporation of the realistic attenuation that has not been affordable so far in the

3-D finite-difference modeling, i.e., which could not be included without significant memory

and time optimization.

We do not discuss here such problems of the finite-difference schemes as consistency of

the schemes on a free surface and internal material discontinuities, and matching between

two grids, that affect accuracy of the schemes. Similarly we do not compare computational

time requirements. Both problems require more space and special treatment.

2. Equations of Motion in Perfectly Elastic Medium

Consider a Cartesian coordinate system (x1, x2, x3). Let ρ(x) be density, λ(x) and µ(x) Lamè

elastic coefficients, u(x, t) displacement vector, t time, τij(x, t); i, j ∈ {1, 2, 3} stress-tensor
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and f(x, t) body force per unit volume. Then the equation of motion reads

ρui,tt = τij,j + fi , (2.1)

where i, j ∈ {1, 2, 3}, ui,tt = ∂2ui/∂t
2, τij,j = ∂τij/∂xj , and so on. The summation conven-

tion for repeated subscripts is assumed. The stress tensor τij in an isotropic medium is given

by Hooke’s law

τij = λuk,kδij + µ(ui,j + uj,i) , (2.2)

where i, j, k ∈ {1, 2, 3}. For the purpose of classification of the finite-difference schemes

(that will be considered later) we can call the Eqs. (2.1) and (2.2) the displacement-stress

formulation of the equation of motion.

Let u̇i(x, t) be the i-th particle-velocity component. Then we can define the displacement-

velocity-stress formulation of the equation of motion

ρu̇i,t = τij,j + fi , (2.3)

u̇i = ui,t , (2.4)

τij = λuk,kδij + µ(ui,j + uj,i) . (2.5)

If we do not calculate displacement using Eq. (2.4) we have to differentiate Hooke’s law

(2.5) with respect to time. We obtain the velocity-stress formulation

ρu̇i,t = τij,j + fi , (2.6)

τij,t = λu̇k,kδij + µ(u̇i,j + u̇j,i) . (2.7)

Finally, inserting Hooke’s law into Eq. (2.1) we obtain the displacement formulation of the

equation of motion

ρui,tt = (λuk,k)i + (µui,j)j + (µuj,i)j + fi . (2.8)

Here, (µuj,i)j = ∂(µ
∂uj
∂xi

)/∂xj , and so on. Later, x, y, z will be used instead of x1, x2, x3.

Similarly, u, v,w will be used instead of u1, u2, u3.

3. Finite-Difference Schemes

The equation of motion can be solved using the finite-difference (FD) method. The FD

method is a direct numerical method for solving differential equations. The application of

the FD method includes construction of a discrete FD model of the problem, analysis of the

FD model, and numerical computations.

The above-described formulations of equation of motion (2.1)–(2.8) can be used for

constructing FD schemes. Correspondingly, we can call the FD schemes displacement-stress

(DS), displacement-velocity-stress (DVS), velocity-stress (VS), and displacement (D) FD

schemes, respectively. While displacement schemes on conventional grids have been used

since the end of the sixties, e.g., see Ref. 10, the displacement scheme with a good level
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of consistency at material discontinuities has been developed only recently by Zahradńık.11

Madariaga12 suggested a velocity-stress scheme on a staggered grid to study the seismic

source and Virieux13,14 adopted it for modeling the SH and P-SV elastic waves. Luo and

Schuster15 suggested a parsimonious staggered-grid scheme based on the displacement-stress

formulation.

Displacement formulation usually is applied on a conventional grid (all displacement com-

ponents and material parameters are defined at each grid point). The other formulations

advantageously are applied on a staggered grid (different displacement/particle-velocity

components, stress-tensor components and material parameters are defined in different grid

positions).

Since full presentation of the FD schemes in the three-dimensional (3-D) case would be

too lengthy and unnecessary, we will give here only simplified schemes. Let U be displace-

ment, U̇ particle velocity, Ux(U̇x) spatial derivative of U(U̇), T stress, M elastic modulus,

and m time-level index. Then we can write the following simplified FD schemes:

displacement-stress

Tm = M · Umx ,

Um+1 = 2Um − Um−1 +
42t

ρ
Tmx , (3.1)

displacement-velocity-stress

Tm = M · Umx , (3.2)

U̇m+1/2 = U̇m−1/2 +
4t
ρ
Tmx , (3.3)

Um+1 = Um +4tU̇m+1/2 , (3.4)

velocity-stress

Tm = Tm−1 +4tMU̇m−1/2
x ,

U̇m+1/2 = U̇m−1/2 +
4t
ρ
Tmx , (3.5)

displacement

Um+1 = 2Um − Um−1 +
42t

ρ
(MUmx )x , (3.6)

where4t is a time-step. All the schemes are second-order accurate in time while the order of

approximation in space is not specified since the spatial-derivative terms are included only

symbolically. In other words, the schemes are valid for the second-, fourth- or higher-order

of approximation.

Detailed presentations of the schemes in the 3-D case can be found, e.g., in papers by

Ohminato and Chouet16 (second-order displacement-stress scheme), Graves17 (fourth-order



June 14, 2001 15:29 WSPC/130-JCA 00068

Efficiency and Optimization of the 3-D Finite-Difference Modeling 597

velocity-stress scheme), and Moczo et al.18 (second-order displacement scheme). We do not

know any paper presenting the displacement-velocity-stress scheme. In fact, we want to

promote it by this article.

Regarding accuracy, we can divide the four schemes into a group consisting of the

displacement-stress, displacement-velocity-stress and velocity-stress schemes, and the dis-

placement scheme. While the displacement scheme has accuracy problems in media with

high Poisson’s ratio and large velocity contrasts, the three other schemes can be applied to

such media.

On the other hand, Moczo et al.18 demonstrated remarkable accuracy of their displace-

ment scheme in media with α/β < 2 and velocity contrast as large as 5. They showed

that the scheme was capable to account for the position of an internal discontinuity more

accurately than the three staggered-grid schemes. The level of accuracy in simulating the

traction-free condition on a flat free surface was also shown to be very good. These properties

of the particular displacement scheme are reasons why we include it in this review.

Let us note again that, generally, a displacement scheme can mean, in fact, a variety of

different displacement schemes that differ in accuracy. The difference comes from different

approximations of the mixed second spatial derivatives.

4. Memory Requirements in Perfectly Elastic Media

4.1. Time integration

It is clear from Eqs. (2.1)–(2.8) and FD schemes (3.1)–(3.6) that they differ in what is

integrated in time. In the case of the displacement-stress and displacement schemes, time

marching is applied to displacement. Displacements at two successive time-levels, say m and

m − 1, have to be stored in memory in order to update displacement at time-level m + 1.

In the case of the displacement-velocity-stress scheme time marching is applied to both

displacement and particle velocity. Since, however, displacement and particle velocity are

related by Eq. (3.4) and shifted in time by half-value of the time-step, only displacement

at one time-level, m, and particle velocity at one time-level, m − 1/2, have to be stored

in memory in order to update displacement at time-level m + 1 and particle velocity at

time-level m + 1/2. In the case of the velocity-stress scheme time marching is applied to

both the particle velocity and stress. Similarly, as in the previous case, only particle velocity

at one time-level, m − 1/2, and stress at one time-level, m− 1, have to be stored in order

to update particle velocity at time-level m+ 1/2 and stress at time-level m. An important

difference between the displacement-stress/displacement-velocity-stress and velocity-stress

schemes comes from the simple fact that the stress tensor has six independent components

while displacement and particle velocity only three.

4.2. Point-to-point heterogeneity of the medium

Assume first such heterogeneity of the medium that ρ, λ and µ can change between

each two grid points. Then it follows from the derivation of the displacement-stress,
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displacement-velocity-stress and velocity-stress schemes that each grid position of the

displacement/particle-velocity components should be assigned its value of density, say, U/U̇ ,

V/V̇ andW/Ẇ grid positions should be assigned ρU , ρV and ρW density values, respectively.

Similarly, we should assign three different values of shear modulus, µxy, µxz and µyz to three

different grid positions of the stress-tensor components Txy, Txz and Tyz , respectively. Finally,

two values, λ and µ, are assigned to the joint grid position of three diagonal stress-tensor

components Txx, Tyy and Tzz.

In the case of the displacement scheme, each grid point of a conventional grid is assigned

one value of density and three values of λ : λx, λy, λz and µ : µx, µy, µz. Here, λx, e.g.,

denotes a harmonic average of λ between two neighboring grid points in the x-direction.

4.3. Homogeneous material cells

Both the displacement-stress and velocity-stress schemes are used by all (as far as we know)

with the assumption of a homogeneous medium within one grid cell. This means that only

three material parameters, ρ, λ and µ, are assigned to each grid cell. In the case of the

displacement scheme, keeping six effective parameters (λx, λy, λz and µx, µy, µz) is essen-

tial for accuracy. Simplification would decrease not only the number of parameters but

mainly the level of consistency at material discontinuities and consequently the overall

accuracy.18,19

4.4. Memory requirements

We can now summarize memory requirements of the four FD schemes. Let MX,MY and

MZ be the numbers of grid points/cells in the x-, y- and z- directions, respectively. Let p

denote the number of bytes for the used real-value precision; p = 4 in single precision and

p = 8 in double precision. Displacement, particle-velocity, stress-tensor components, and

material parameters that have to be stored, as well as the numbers of bytes occupied by

these quantities in the four types of the FD schemes are as follows:

Point-to-point heterogeneous medium

displacement-stress scheme

Um, V m,Wm, Um−1, V m−1,Wm−1 ,

ρU , ρV , ρW , λ, µ, µxy, µxz, µyz ,

NP
DS = p ·MX ·MY ·MZ · 14 , (4.1)

displacement-velocity-stress scheme

Um, V m,Wm, U̇m−
1
2 , V̇ m− 1

2 , Ẇm− 1
2 ,

ρU , ρV , ρW , λ, µ, µxy, µxz, µyz ,

NP
DV S = p ·MX ·MY ·MZ · 14 , (4.2)
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velocity-stress scheme

U̇m−
1
2 , V̇ m− 1

2 , Ẇm− 1
2 , Tm−1

xx , Tm−1
yy , Tm−1

zz , Tm−1
xy , Tm−1

xz , Tm−1
yz ,

ρU , ρV , ρW , λ, µ, µxy, µxz, µyz ,

NP
V S = p ·MX ·MY ·MZ · 17 , (4.3)

displacement scheme

Um, V m,Wm, Um−1, V m−1,Wm−1 ,

ρ, λx, λy, λz, µx, µy, µz ,

NP
D = p ·MX ·MY ·MZ · 13 , (4.4)

Heterogeneous medium consisting of homogeneous material cells

Since ρ = ρU = ρV = ρW and µ = µxy = µxz = µyz in this case, we have

NDS = p ·MX ·MY ·MZ · 9 , (4.5)

NDV S = p ·MX ·MY ·MZ · 9 , (4.6)

NV S = p ·MX ·MY ·MZ · 12 , (4.7)

instead of Eqs. (4.1)–(4.3).

It is very clear that the assumption of homogeneous material cells considerably reduces

memory requirements. Given such parameterization of the medium, i.e., having only three

values, ρ, λ, µ, assigned to one grid cell, Graves17 suggested how to compute effective pa-

rameters ρU , ρV , ρW , λ, µ, µxy, µxz, and µyz without additional memory requirements. Using

numerical tests Graves17 verified that application of effective parameters better accounts

for material heterogeneity. For another example of treating homogeneous material cells see

paper by Ohminato and Chouet.16

Compared to the velocity-stress scheme, the displacement-stress and displacement-

velocity-stress schemes need only 82% of memory in the case of the point-to-point het-

erogeneity and only 75% in the case of the medium consisting of homogeneous cells. This,

obviously, is significant.

The displacement-stress and displacement-velocity-stress schemes need the same mem-

ory. The use of the displacement-velocity-stress scheme has two advantages compared to the

displacement-stress scheme: (1) we have both the displacement and particle velocity at the

same grid positions at each time-level, (2) programming and code optimization is easier.

5. Additional Memory Requirements Due to Attenuation

Incorporation of the realistic models of attenuation in time-domain computations has been

made possible thanks to methods developed by Day and Minster,20 Emmerich and Korn21
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and Carcione et al.22 Emmerich and Korn’s approach is based on rheology of the gener-

alized Maxwell body while Carcione22 made use of the generalized Zener body. Both real-

istic attenuation models allow accounting for an arbitrary Q(ω) law and spatially varying

attenuation.

Although possible in principle, incorporation of the realistic attenuation in the 3-D

modeling requires considerable additional computer memory and time. Increase of mem-

ory requirements poses a serious problem. Therefore, Graves17 suggested an approximate

technique to include attenuation at minimal cost. We will briefly review both approaches

and corresponding additional memory requirements.

5.1. Approximate attenuation correction

In the approximate technique suggested by Graves17 the updated stress and particle velocity

are multiplied at each time-step by the attenuation function A = exp(−πf0
4t
Qβ

) where Qβ is

a spatially varying quality factor for the S waves at the reference frequency f0 and 4t is a

time-step. Such attenuation function is correct for a plane wave in a homogeneous medium.

Since Qβ is a linear function of frequency, the technique can give good results if the frequency

range of the simulation is relatively narrow and centered around the frequency and ifQβ does

not significantly differ from Qα. On the other hand, an attractive feature of the technique is

the minimum additional memory requirement that is, in bytes, NAA
V S = p ·MX ·MY ·MZ,

assuming, generally, different Qβ for different grid cells. The technique is also applicable to

other three schemes with the same additional memory NAA
V S = NAA

DS = NAA
DV S = NAA

D . The

attenuation function is applied to those field quantities that are integrated in time.

5.2. Attenuation based on rheology of the generalized Maxwell body

Incorporation of the attenuation based on rheology of the generalized Maxwell body means

that the Hooke’s law (2.2) is modified:

τij = λuk,kδij + µ(ui,j + uj,i)−
n∑
l=1

ζijl .

The anelastic functions ζijl are determined by equations

ζ̇ijl + ωlζ
ij
l = ωl[λY

λ
l uk,kδij + µY µl (ui,j + uj,i)] ; l = 1, . . . , n ,

where ωl, l = 1, . . . , n, are the angular relaxation frequencies. The coefficients Y λ
l and Y µ

l ,

l = 1, . . . , n, are obtained from the systems of equations

n∑
l=1

ωlω̃k + ω2
l Q̃
−1
η (ω̃k)

ω̃2
k + ω2

l

Y η
l = Q̃−1

η (ω̃k) , k = 1, . . . , 2n− 1 ,

η ∈ {α, β} , Y µ
l = Y β

l , Y λ
l =

α2Y α
l − 2β2Y µ

l

α2 − 2β2
,
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where Q̃α(ω̃k) and Q̃β(ω̃k), k = 1, . . . , 2n−1, are desired values of the quality factors for the

P and S waves, respectively, at the specified frequencies ω̃k. (More detailed presentation in

the case of the displacement FD scheme can be found in paper by Moczo et al.9)

In the case of the most efficient FD schemes, i.e., in the case of the displacement-stress

and displacement-velocity-stress schemes, the simplified FD schemes (see Eqs. (3.1) and

(3.2)) are modified as follows:

ζ
m+ 1

2
l =

2− ωl4t
2 + ωl4t

ζ
m− 1

2
l +

2ωl4t
2 + ωl4t

YM
l Umx , l = 1, . . . , n ,

ζml =
1

2
(ζ
m− 1

2
l + ζ

m+ 1
2

l ) ,

Tm = MUmx −
n∑
l=1

ζml ,

and

Um+1 = 2Um − Um−1 +
42t

ρ
Tmx

in the displacement-stress scheme or

U̇m+ 1
2 = U̇m−

1
2 + 4t

ρ T
m
x ,

Um+1 = Um +4tU̇m+ 1
2

in the displacement-velocity-stress scheme. Here, ζml represents an appropriate anelastic

function ζijl , i, j ∈ {1, 2, 3} and l = 1, . . . , n, similarly as, e.g., M stands for an appropriate

elastic modulus.

Incorporation of the above-described attenuation in the displacement-stress and displace-

ment-velocity-stress schemes requires storing of the following additional quantities for each

grid cell:

Y λ
l , Y

µ
l , ζ

xx
l , ζyyl , ζ

zz
l , ζ

xy
l , ζxzl , ζyzl , l = 1, . . . , n .

The corresponding number of bytes is

NA
DS = NA

DV S = p ·MX ·MY ·MZ · 8n .

The velocity-stress scheme requires the same additional memory, i.e.,

NA
V S = NA

DS = NA
DV S .

The only slight difference is in the definition of anelastic functions due to time derivative of

the stress tensor in the velocity-stress formulation.

For the sake of completeness, let us also mention the case of the displacement scheme.

Additional quantities to be stored for each grid point are (see Ref. 9)

Y λ
l , Y

µ
l , ζ

U
l , ζ

V
l , ζ

W
l , l = 1, . . . , n ,
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and the corresponding number of bytes is

NA
D = p ·MX ·MY ·MZ · 5n .

Here we assume that the attenuating properties of the medium are sufficiently described by

some effective point values Y λ
l and Y µ

l , l = 1, . . . , n assigned to each grid point. Let us recall

that elastic properties in our displacement scheme are described using harmonic averages

evaluated along the grid legs between two neighboring grid points.

Emmerich and Korn21 demonstrated that for many applications it is sufficient to consider

three relaxation frequencies, i.e., n = 3. Then the additional memory requirements are:

displacement-stress, displacement-velocity-stress, velocity-stress

NA
DS = NA

DV S = NA
V S = p ·MX ·MY ·MZ · 24 ,

displacement

NA
D = p ·MX ·MY ·MZ · 15 .

Obviously, the additional memory is too large. Therefore, Zeng23 and Day24 developed a new

method that allows to incorporate the realistic attenuation with significantly lower memory

requirements. In Day’s24 approach, the anelastic functions ζijl are spatially distributed in

a coarse staggered manner. One anelastic function ζijl for one relaxation frequency ωl is

distributed with a spatial period of 2h, h being a grid spacing. Consequently, n, the number

of relaxation frequencies, is 8. Consider, e.g., a grid cube h × h × h with the stress-tensor

component T xz located at the cube’s 8 corners. Only one of the 8 ζijl , l = 1, . . . , 8, anelastic

functions is assigned to each of the 8 positions (cube’s corners), say, ζxz1 is assigned to one

position, ζxz2 to other position, etc. Consequently, the total number of ζxzl , l = 1, . . . , 8, in

the whole grid is 8 MX
2

MY
2

MZ
2 = MX ·MY ·MZ. Since we have six independent stress-

tensor components, the total number of the anelastic functions ζijl , l = 1, . . . , 8, in the whole

grid is 6 · MX · MY · MZ. Since Y λ
l and Y µ

l are distributed in the same manner (Y λ
l

and Y µ
l are assigned to the set of ζijl , i, j,∈ {1, 2, 3}, for one relaxation frequency ωl), the

total number of Y λ
l and Y µ

l , l = 1, . . . , 8, in the whole grid is 2 ·MX · MY ·MZ. The

additional memory due to attenuation in the Day’s24 approach in the displacement-stress,

displacement-velocity-stress and velocity-stress schemes is

NAD
DS = NAD

DV S = NAD
V S = p ·MX ·MY ·MZ · 8 .

The additional memory in the case of the displacement scheme is

NAD
D = p ·MX ·MY ·MZ · 5 .

We see that the additional memory in the Day’s24 approach is equivalent to the case of just

one relaxation frequency in the original Emmerich and Korn’s21 approach.
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5.3. Total memory requirements

We can now summarize the total memory requirements for all four considered types of the

FD schemes in the case of a heterogeneous medium consisting of homogeneous cells and

attenuation based on rheology of the generalized Maxwell body in the Day’s23 approach:

displacement-stress, displacement-velocity-stress

NT
DS = NT

DV S = p ·MX ·MY ·MZ · 17 , (5.1)

velocity stress

NT
V S = p ·MX ·MY ·MZ · 20 , (5.2)

In the case of the displacement scheme we consider point-to-point heterogeneity of the

medium. The total required memory is

NT
D = p ·MX ·MY ·MZ · 18 , (5.3)

Comparing Eqs. (5.1)–(5.3) with Eqs. (4.5)–(4.7), it is obvious that the required total mem-

ory is too large in all cases. It is not difficult to estimate that the 3-D FD modeling of large-

scale problems including realistic attenuation would be hardly affordable. An improvement

can be achieved through memory optimization.

6. Optimization of the Finite-Difference Modeling

There is a variety of approaches to lower computational time and memory. Reduction of the

total number of grid points and consequently reduction of core memory and computational

time can be achieved by using fourth or higher-order scheme (e.g., Refs. 17, 25 and 26),

grid with a varying size of grid spacings (e.g., Refs. 27 and 28) and combined/discontinuous

grids (e.g., Refs. 9, 29–31). Reduction of core memory and use of disk memory is possible

by applying core memory optimization.17,32 Reduction of both core and disk memory and

their balanced use is achieved by applying combined memory optimization, CDMO.18,33

Parallel programming is now almost necessary to speed up computations for large models

(e.g., Ref. 32).

Before we continue, let us briefly mention core and combined memory optimizations. Core

memory optimization (as described by Graves17 for the velocity-stress scheme) consists in

keeping only a limited number of grid planes in core memory and performing a maximum

possible number of time updates for these planes. The subset of planes repeatedly moves

throughout the entire model space and particle velocity and stress are successively (plane by

plane) and periodically overwritten in disk. (In the case of the displacement-stress scheme

and attenuation displacement and anelastic functions would be periodically overwritten in

disk.) Core memory is significantly reduced, however, disk memory requirements can become

very large. Moreover, large number of the input/output operations increases computational

time and creates a bottleneck of the computations.
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Combined memory optimization, CDMO,33,18 naturally comprises both core and disk

memory optimizations and allows a balanced use of core and disk memory. In disk memory

optimization, the wavelet transform is applied first to a 2-D array of the displacement

(separately to each component) in order to decrease the information entropy. Second, data

compression is performed in the wavelet domain. Then, e.g., only 2 · 3 streams of zeros and

ones are stored and overwritten in disk instead of 2 ·3 ·MX ·MY displacement values which

have to be stored and overwritten in a pure core memory optimization for each grid plane

and each component. (Here 2 means 2 time-levels, 3 means 3 displacement components,

and we assume that a moving subset of planes is made of horizontal grid planes.) Thus,

CDMO significantly reduces the total number of the input/output operations. Moreover,

an increase of the CPU time due to one passage of the subset of planes with compression

was in all numerical experiments always smaller than 0.75% of the time necessary for one

passage without compression.18,33 The time is, of course, computer- and code- dependent.

Let us now focus on the displacement-stress and displacement-velocity-stress schemes

and show how different optimizations can make 3-D modeling in viscoelastic heterogeneous

medium more efficient. The goal is to reduce memory requirement given by Eq. (5.1) as

much as possible. We will do it in several steps.

6.1. Material cell types

Assuming a homogeneous medium within one grid cell we can consider the whole model to

be composed of material cells of several types. Each grid cell is assigned a single integer

number representing one of material cell types. The required total memory is then

NT
DS = NT

DV S = MX ·MY ·MZ · (12p+ q) + 5pK ,

where 12 represents 3 displacement components at 2 time-levels (or 3 displacement and 3

particle-velocity components at 1 time-level) plus 6 anelastic functions ζijl , l = 1, . . . , 8, q is

the number of bytes for the used integer value, 5 represents material parameters ρ, λ, µ, Y λ
l

and Y µ
l , l = 1, . . . , 8, and K is the number of types of material cells. Obviously, in most

cases 5pK is negligible and we will omit it.

6.2. CDMO — combined memory optimization

If we apply combined memory optimization we can distinguish the number of bytes in core

memory, COREM , and the number of bytes in disk memory, DISKM . COREM depends

on the number of grid planes, say, NP , that are kept in core memory at one time. If we

assume that the subset of NP planes is made of the horizontal grid planes,

COREM = MX ·MY ·NP · (12p + q) . (6.1)

DISKM depends on the compression ratio CR that is determined by the wavelet com-

pression. Since the wavelet compression is applied separately to each displacement/particle-

velocity component and anelastic function at one plane at one time-level, CR represents
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a minimum of compression ratios for all components, anelastic functions, planes and time-

levels. Disk memory is then

DISKM = MX ·MY ·MZ ·
(

12p

CR
+ q

)
.

6.3. h× h× h 3h× 3h× 3h discontinuous grid + CDMO

Neither use of material cell types nor CDMO reduces the actual number of the grid cells.

As mentioned earlier there are several ways how to do it. Here we consider a discontinuous

grid whose upper part (covering region with lower velocities) is the h×h×h grid and lower

part (covering region with larger velocities) is the 3h× 3h× 3h grid. The size 3h of the grid

spacing in the coarser grid is due to the structure of the scheme on a staggered grid. Let

MZH be the number of grid cells in the z-direction in the upper h×h×h grid. Let MZ3H

be the number of grid cells in the z-direction in the lower 3h× 3h× 3h grid. Then

COREM = MX ·MY ·NP · (12p+ q) ,

and

DISKM =

[
MX ·MY ·MZH +

(
MX − 1

3
+ 1

)
·
(
MY − 1

3
+ 1

)
·MZ3H

](
12p

CR
+ q

)
.

Here, COREM is the same as that given by Eq. (6.1) for the uniform h× h× h grid since

the upper part of the discontinuous grid is the h × h× h grid. Obviously, COREM in the

lower coarser grid is smaller.

7. Numerical Example

We can illustrate the above formulae for memory requirements on the example of modeling

ground motion during the January 17, 1995 Hyogoken-Nanbu (Kobe) earthquake. We con-

sider the same grid as was used for the elastic model in the simulation by Kristek et al.34

The parameters of the model as well as memory requirements are given in Table 1. Since we

use the fourth-order displacement-stress or displacement-velocity-stress FD scheme we take

six grid spacings per minimum wavelength.35

Large memory requirements in the elastic modeling without optimization, given in

Table 1, clearly illustrate necessity of memory optimization. This necessity is further stressed

by significant increase of memory requirement due to inclusion of the realistic attenuation

despite efficiency of the Day’s24 approach. Moreover, the grid model covers only part of the

Osaka basin (see Ref. 34) and considered minimum S-wave velocity, βmin, is, in fact, larger

than the actual velocity in the uppermost layer. Artificial reduction of the computational

region as well as the used minimum S-wave velocity obviously reduce numerical cost. This

one more time underlines necessity of memory optimization.
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Table 1. Memory requirements in the case of simple uniform
grid and three levels of optimization in the fourth-order displace-
ment-stress and displacement-velocity-stress finite-difference model-
ing. MX,MY,MZ — the numbers of grid cells in the x-, y- and z-
directions, MZH — the number of grid cells in the z-direction in the
upper (h× h× h) part of the h × h × h 3h × 3h × 3h discontinuous
grid, MZ3H — the number of grid cells in the z- direction in the lower
(3h×3h×3h) part of the h×h×h 3h×3h×3h discontinuous grid, h-
grid spacing, βmin — the minimum S-wave velocity, fac — the max-
imum frequency up to which the computation should be sufficiently
accurate, NP — the number of horizontal grid planes in the subset of
planes that is kept in core memory at one time, CR — minimum com-
pression ratio, p — the number of bytes for the used real-value preci-
sion, q — the number of bytes for the used integer value, COREM —
core memory requirements, DISKM — disk memory requirements,
CDMO — combined memory optimization, GMB — attenuation —
attenuation based on rheology of the generalized Maxwell body.

MX = 1054, MY = 247, MZ = 501, MZH = 47, MZ3H = 151,
h = 55 m, βmin = 333 m/s, fac ≤ 1Hz,

NP = 10, CR = 12, p = 4, q = 2

Elastic GMB – Attenuation

uniform h× h× h grid

COREM 4478 MBa 8458 MB
DISKM – –

material cell types

COREM 3234 MB 6219 MB
DISKM – –

CDMO

COREM 65 MB 124 MB
DISKM 498 MB 746 MB

h× h× h 3h× 3h× 3h+ CDMO

COREM 65 MB 124 MBb

DISKM 64 MB 95 MBb

aCOREM in the case of the approximate attenuation correction would
be 4975 MB.All other memory requirements would be the same as in
the elastic case.
bTotal memory requirements in the case of the h×h×h 3h×3h×3h
grid without CDMO would be 794 MB.

8. Conclusions

The 3-D finite-difference elastic and viscoelastic modeling of an earthquake ground motion in

large-scale models of sedimentary basins requires considerable computer memory and time.

The use of an efficient finite-difference scheme (e.g., the fourth-order displacement-stress

scheme on an uniform staggered grid) is not sufficient, especially, if realistic attenuation is

to be considered.
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Fortunately, methods to reduce memory requirements and/or computational time in the

finite-difference modeling have been developed recently.

We reviewed memory requirements of four basic types of the finite-difference schemes on

the uniform grids in the cases of the 3-D perfectly elastic modeling, approximate attenuation

correction and realistic attenuation.

We have presented application of the powerful optimization techniques to the 3-D fourth-

order displacement-stress and displacement-velocity-stress modeling in the case of realistic

attenuation. The techniques include description of a medium using material cell types, com-

bined memory optimization, and combination of a discontinuous grid with combined memory

optimization. We have shown that application of such powerful optimization significantly

reduces memory requirements in simulations of an earthquake ground motion in realistic

large-scale models. Implementation of the optimization techniques is not in contradiction

with parallelization.
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