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S U M M A R Y
As recently demonstrated the most advanced finite-difference (FD) schemes are sufficiently
efficient and accurate numerical-modelling tools for seismic wave propagation and earthquake
ground motion especially in local surface sedimentary structures. The key advantages of the
explicit FD schemes are a uniform grid, no matter what positions of material interfaces are in the
grid, and one scheme for all interior points, no matter what their positions are with respect to the
material interfaces. Efficiency and accuracy is determined by the grid dispersion and discrete
representation of a material heterogeneity. After having developed discrete representations for
the elastic and viscoelastic media, we present here a new discrete representation of material
heterogeneity in the poroelastic medium. The representation is capable of subcell resolution
and makes it possible to model an arbitrary shape and position of an interface in the grid. At the
same time, the structure and thus the number of operations in the FD scheme are unchanged
compared to the homogeneous or smoothly heterogeneous medium.

Key words: Numerical approximations and analysis; Computational seismology; Theoretical
seismology; Wave propagation.

1 I N T RO D U C T I O N

1.1 Motivation

There are two key advantages of the explicit finite-difference (FD) schemes: (1) the possibility to cover a computational domain with a
uniform spatial grid no matter what positions of material interfaces are in the grid, (2) the possibility to apply one scheme to all interior
gridpoints (points not lying on a grid border) no matter what their positions are with respect to the material interface. Computational
efficiency and accuracy are determined by the grid dispersion and the way how continuous and mainly discontinuous material heterogeneity
(material interface) is represented by values of material parameters assigned to gridpoints, that is, how the true continuum is represented in
the discrete grid. Moczo et al. (2002, 2014), Kristek & Moczo (2003), and Kristek et al. (2017) developed the discrete representation of the
material interface between two elastic and viscoelastic materials that is capable of subcell resolution and ‘sensing’ an arbitrary shape and
position of the interface in the grid. Extensive numerical modelling of seismic wave propagation and earthquake ground motion in canonical
and complex realistic models confirmed that with the proper discrete representation of material heterogeneity the most advanced FD schemes
can be more efficient in case of local surface sedimentary structures than the spectral-element and discontinuous-Galerkin (DG) methods
(e.g. Chaljub et al. 2010, 2015; Maufroy et al. 2015).

A natural question is then whether a similarly accurate discrete representation of the material heterogeneity can be obtained also for the
poroelastic medium.

As in the case of the elastic and viscoelastic media, it is crucial to find a representation that is both sufficiently accurately (though
approximately) consistent with boundary conditions at the interface as well as computationally efficient. In the case of the elastic and
viscoelastic media, the orthorhombic representation is such a sufficiently accurate approximation that does not increase the number of non-
zero elements of the stiffness matrix (and thus neither the number of algebraic operations in calculation of stress) compared to the smoothly
heterogeneous medium.
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Discrete representation of poroelastic medium 1073

In this paper, we explore a similar approach in the case of poroelastic media. Both the equations of motion and constitutive equations
of the poroelastic media are considerably more complex than those for the elastic medium. Consequently, the problem is not trivial and it is
hard to intuitively guess what we can expect.

1.2 Previous studies on FD modelling in the porous medium

The FD method has been used for modelling wave propagation in the elastic medium since late 60 s—probably the best known example being
the article by Alterman & Karal (1968). The method was applied for simulating wave propagation in the porous medium later. One of the
first studies was the article by Garg et al. (1974) who investigated propagation of compressional waves in fluid-saturated elastic porous media
using the computer code POROUS (Riney et al. 1972, 1973).

More studies applying the FD method appeared in the 1990s. Hassanzadeh (1991) used it to solve the Biot’s poroacoustic equations
in a homogeneous fluid-saturated porous medium. Zhu & McMechan (1991) developed a second-order explicit conventional FD scheme,
following Kelly et al. (1976), for solving the Biot’s poroelastic equations in a homogeneous porous medium. Dai et al. (1995) extended the
FD method to Biot’s poroelastic wave equations in 2-D heterogeneous porous media. Considering a first-order hyperbolic system equivalent
to Biot’s equations, they developed a MacCormack predictor–corrector (4, 2) scheme (fourth-order accurate in space and second-order
accurate in time), based on a spatial splitting technique. The scheme on the collocated grid updates the vector consisting of the solid and fluid
particle-velocity components, the solid stress-tensor components and the fluid pressure.

Schemes used by Hassanzadeh (1991) and Zhu & McMechan (1991) are based on the homogeneous approach—wave equations for
each homogeneous layer are solved separately and the boundary conditions must be satisfied explicitly on the interfaces between different
layers. Dai et al. (1995) applied the heterogeneous approach—one scheme is used for all interior gridpoints and the heterogeneity of medium
is accounted for by values of material parameters assigned to the grid positions. Dai et al. explicitly said about the heterogeneous approach
what was then considered correct: the boundary conditions are satisfied implicitly and more complicated geometries can be accommodated
with no extra effort. It has been later recognized that this is not so (Moczo et al. 2002, 2014; Kristek et al. 2017).

Zhang (1999) developed a quadrangle-grid velocity–stress FD scheme for simulating wave propagation in 2-D heterogeneous porous
media. In his non-orthogonal spatial grid, two solid particle-velocity components and two components of velocity of the pore fluid relative to
that of the solid share one grid position, whereas the three solid stress-tensor components and the fluid pressure share another grid position.
Apart from the non-orthogonal geometry and fluid-related field quantities, the grid is the partly staggered grid (SG, first used by Andrews in
1973 and later called by Saenger and his collaborators rotated SG).

Zeng et al. (2001) applied the perfectly matched layer in their FD numerical modelling of wave propagation in poroelastic media. Wang
et al. (2003) improved efficiency of the FD modelling of wave propagation in poroelastic media by developing an (8, 2) explicit velocity–stress
SG scheme. Wang et al. (2003) pointed out, referring to Levander (1988), that with the SG schemes strong velocity-contrast interfaces can be
handled with high accuracy because derivatives of material parameters are not required. As already mentioned, the representation of interfaces
seems easy and implicit with the heterogeneous schemes solving the first-order equations of motion but, in fact, it is not the case—again we
refer to Moczo et al. (2002, 2014) and Kristek et al. (2017).

Saenger et al. (2004) applied the rotated staggered FD grid (the basic variant of the partly SG) technique to calculate elastic wave
propagation in 3-D porous media. Saenger et al. (2005) extended the approach to porous media saturated with a Newtonian (viscous) fluid
using a generalized Maxwell body.

Sheen et al. (2006) presented a parallel implementation of the 2-D P–SV velocity–stress SG FD scheme, fourth order in space and
second order in time, for fluid-saturated poroelastic media. They also addressed the aspect of the effective media parameters. They averaged
shear modulus according to Graves (1996). They applied harmonic averaging to density, effective fluid density, fluid density and mobility of
the fluid. Harmonic averaging of density, however, violates the boundary conditions at an interface (Moczo et al. 2002). The authors correctly
suggest the need to properly address the problem of the effective grid material parameters in the subsequent research.

Masson et al. (2006) applied a 2-D (4, 2) velocity–stress SG FD scheme. They analysed stability conditions and demonstrated that over
a wide range of porous material properties typical of sedimentary rock and despite the presence of fluid pressure diffusion (Biot slow waves),
the usual Courant condition governs the stability as if the problem involved purely elastic waves. In relation to our study, we may note that
they averaged shear modulus according to Graves (1996). Masson & Pride (2007) applied FD modelling to investigate seismic attenuation and
dispersion due to mesoscopic-scale heterogeneity. Specifically, they simulated one loss mechanism that can be important across the seismic
band of frequencies when heterogeneity is present within fluid-saturated porous samples.

Krzikalla & Müller (2007a,b) applied the rotated spatial FD operators (Saenger et al. 2000) to improve stability in modelling high-
contrast materials compared to standard SG scheme. Wenzlau & Müller (2009) implemented a velocity–stress FD scheme for modelling
wave propagation and diffusion in porous media. The scheme is second-order accurate in time and includes high-order spatial differentiation
operators, and is parallelized using the domain-decomposition technique. The spatial discretization combines the standard and rotated SG
operators. Wenzlau and Müller presented several tests to estimate the accuracy of poroelastic wave-propagation schemes for the high-frequency
case where the Biot slow wave is a propagating wave mode and for the low-frequency case when this wave mode becomes diffusive. They
introduced a diffusion wavelength in relation to the numerical dispersion. They also addressed the stability for strongly heterogeneous medium
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1074 P. Moczo et al.

and compared the standard and rotated SG schemes. Masson & Pride (2010) expanded their scheme to Biot’s equations across all frequencies.
O’Brien (2010) presented 3-D (4, 2) standard and rotated SG schemes. They analysed stability and numerical dispersion.

Chiavassa & Lombard (2011, 2013) made an important contribution to numerical modelling of wave propagation in heterogeneous 2-D
fluid/poroelastic media mainly by applying an immersed interface method to discretize the interface conditions and to introduce a subcell
resolution. They also implemented a fourth-order ADER scheme with Strang splitting for time-marching, and a space–time mesh refinement
to capture the slow compressional wave. With respect to the discontinuous material heterogeneity the immersed-interface method is the
most sophisticated approach applied so far. Arbitrary-shaped interfaces can be handled and accuracy is ensured by a subcell resolution on a
Cartesian grid. Its only disadvantage is the relatively high computational cost.

Chiavassa & Lombard (2013) made this explicit statement: ‘. . . arbitrary-shaped geometries with various interface conditions . . . are
badly discretized by FD methods on Cartesian grids’. Well, the ‘FD methods’ is in fact a large family of FD schemes differing strongly in their
accuracy and efficiency. The statement by Chiavasa and Lombard is relevant mainly for those FD modellers who were misled by the absence
of derivatives of material parameters in the velocity–stress or displacement–stress formulation of the equation of motion and constitutive
relation. Those modellers assumed that boundary conditions are implicitly satisfied at boundaries. Consequently, majority of the FD schemes
for seismic wave propagation had been using for years grid material parameters inconsistent with the boundary conditions at the interface;
see Moczo et al. (2014).

Blanc (2013) presented a numerical approach to the complete Biot-DA (diffusive approximation) system in which the equations of
evolution are split into two parts: a propagative part is discretized using a fourth-order FD scheme, and a diffusive part is solved exactly. She
also implemented the immersed-interface method to account for the jump conditions and for the geometry of the interfaces on a Cartesian
grid.

Yang & Mao (2017) presented simulation of seismic wave propagation in 2-D poroelastic media using weighted-averaging FD stencils
in the frequency–space domain. Their scheme is an extension of the 25-point weighted-averaging FD scheme proposed by Min et al. (2000).
They used the optimal weighting coefficients in order to account for medium heterogeneity without rotating the coordinate system and the
gridpoints.

For further reading on computational poroelasticity and numerical modelling, we refer to review by Carcione et al. (2010) and Yang &
Mao (2017).

1.3 Structure of this paper

We first recall the constitutive relations for the poroelastic medium and boundary conditions at a material interface between poroelastic
media. Then, we analyse the constitutive relation at a planar material interface parallel with a grid plane. Based on the analysis, we eventually
present approximate grid-cell averaging of material parameters appearing in the constitutive relations. We continue with the equations of
motion. After addressing the planar interface parallel with a grid plane, we present grid-cell averaging of material parameters appearing in
the equations of motion. We then test the developed discrete representation numerically by comparing our seismograms with seismograms
calculated by the exact method developed by Diaz & Ezziani (2008). Eventually, we present comparison of our seismograms with the DG
method for a complex model.

In this paper, we address the 2-D problem. It is, however, straightforward to extend the approach and, in fact, directly the resulting
discrete representation, to the 3-D problem.

2 C O N S T I T U T I V E L AW A N D E Q UAT I O N S O F M O T I O N F O R A 2 - D P O RO E L A S T I C
M E D I U M

A comprehensive introduction and theory of wave propagation in the porous media is given, e.g. in the book by Carcione (2015), review
article by Carcione et al. (2010) and comprehensive article by Morency & Tromp (2008). Formulation of equations for the 2-D P–SV problem
may be found in, e.g. articles by Carcione (1998) and Carcione & Helle (1999).

The constitutive equations for 2-D P–SV problem in a smoothly heterogeneous isotropic poroelastic medium may be written as⎡
⎢⎢⎢⎣

σxx

σzz

σxz

−p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

� + α2 M λ + α2 M 0 αM
λ + α2 M � + α2 M 0 αM

0 0 2μ 0
αM αM 0 M

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

εxx

εzz

εxz

εw

⎤
⎥⎥⎥⎦ (2.1)

where σxx , σzz and σxz are the total stress-tensor components, p is the fluid pressure, εxx , εzz and εxz are the solid matrix strain-tensor
components, εw ≡ wk,k = wx ,x + wz,z , wx and wz are components of the displacement of the fluid relative to the solid frame, � ≡ λ + 2μ,
λ and μ are Lamé elastic coefficients of the solid matrix, α is the poroelastic coefficient of effective stress and M is the coupling modulus
between the solid and fluid.
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Discrete representation of poroelastic medium 1075

It may be convenient to rewrite the constitutive equations in the following form:

σxx = � εxx + λεzz − αp
σzz = λ εxx + �εzz − αp
p = −αMεxx − αMεzz − Mεw

σxz = 2μεxz

(2.2)

3 B O U N DA RY C O N D I T I O N S AT A M AT E R I A L I N T E R FA C E

Consider an interface between two materials indicated by the + and − superscripts. The boundary conditions at an interface between two
poroelastic media (Deresiewicz & Skalak 1963; Lovera 1987; Gurevich & Schoenberg 1999; for the overview see Carcione 2015) require
continuity of the (i) traction vector, (ii) fluid pressure, (iii) solid displacement vector and (iv) normal component of the relative fluid
displacement vector. These conditions may be written as

σ+
i j n j = σ−

i j n j

p+ = p−

u+
i = u−

i

w+
i ni = w−

i ni

(3.1)

where ni is the unit normal to the interface and ui solid displacement vector. Einstein’s summation convention for repeating indices is
assumed.

Consider a planar interface. The boundary conditions imply for the interface perpendicular to the x-axis

σxx = σ+
xx = σ−

xx

σxz = σ+
xz = σ−

xz

εzz = ε+
zz = ε−

zz

p = p+ = p−

(3.2)

and for the interface perpendicular to the z-axis

σzz = σ+
zz = σ−

zz

σxz = σ+
xz = σ−

xz

εxx = ε+
xx = ε−

xx

p = p+ = p−

(3.3)

The other quantities are discontinuous.
Let us note that this paper does not address the problem of the traction-free surface.

4 S T R E S S – S T R A I N R E L AT I O N F O R A P L A NA R M AT E R I A L I N T E R FA C E

We will derive stress–strain relations for a planar material interface parallel with a Cartesian coordinate plane. We will assume that the planar
interface separates two homogeneous poroelastic half-spaces in contact.

4.1 Shear stress-tensor component at a planar interface perpendicular to the x-axis

For the two half-spaces (indicated by the + and − superscripts) in a contact we may write in general

σxz = 2μ−ε−
xz, σxz = 2μ+ε+

xz (4.1)

or

1
μ− σxz = 2 ε−

xz,
1

μ+ σxz = 2 ε+
xz (4.2)

Considering continuity of σxz and an arithmetic average 〈εxz〉x at the interface,

〈εxz〉x ≡ 1
2

(
ε−

xz + ε+
xz

)
(4.3)

the summation of eq. (4.2) leads to relation

σxz = 2 〈μ〉H x 〈εxz〉x (4.4)

with the harmonic average of the shear moduli

〈μ〉H x ≡ 2
1

μ− + 1
μ+

(4.5)
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1076 P. Moczo et al.

Thus, continuity of σzx and the arithmetic averaging of the discontinuous εzx imply the harmonic averaging of the shear moduli, 〈μ〉H x ,
in the stress–strain relation at the interface. Relation (4.4) has the same form as the fourth relation in eq. (2.2), respectively, for a point in a
smooth medium and is consistent with the interface boundary conditions. Relation (4.4) is the same as in the case of the interface between
two elastic media.

4.2 Normal stress-tensor components at a planar interface perpendicular to the x-axis

It follows from (2.2) that for two half-spaces in contact we may write

σxx = �− ε−
xx + λ−εzz − α− p

σxx = �+ ε+
xx + λ+εzz − α+ p

(4.6)

Relations (4.6) may be written as

ε−
xx = 1

�− σxx − λ−

�− εzz + α−

�− p

ε+
xx = 1

�+ σxx − λ+

�+ εzz + α+

�+ p
(4.7)

Continuity of σxx , εzz and p, and the arithmetic averaging of ε−
xx and ε+

xx lead to

〈εxx 〉x = (〈�〉H x
)−1

σxx −
〈

λ

�

〉x

εzz +
〈 α
�

〉x
p (4.8)

and

σxx = 〈�〉H x 〈εxx 〉x +
〈

λ

�

〉x

〈�〉H xεzz −
〈 α
�

〉x
〈�〉H x p (4.9)

For σzz , we may write

σ−
zz = λ− ε−

xx + �−εzz − α− p
σ+

zz = λ+ ε+
xx + �+εzz − α+ p

(4.10)

Before averaging σ−
zz and σ+

zz , we have to express ε−
xx and ε+

xx using continuous field quantities.
Using eq. (4.7) in eq. (4.10), we obtain

σ−
zz = λ−

�− σxx +
(

�− −
(
λ−)2
�−

)
εzz −

(
α− − α−λ−

�−

)
p

σ+
zz = λ+

�+ σxx +
(

�+ −
(
λ+)2
�+

)
εzz −

(
α+ − α+λ+

�+

)
p

(4.11)

Continuity of σxx , εzz and p, and the arithmetic averaging of σ−
zz and σ+

zz lead to

〈σzz〉x =
〈

λ

�

〉x

σxx +
(

〈�〉x −
〈
λ2

�

〉x)
εzz −

(
〈α〉x −

〈
λα

�

〉x)
p (4.12)

Substituting the right-hand side of eq. (4.9) for σxx gives the final relation for σzz :

〈σzz〉x =
〈

λ

�

〉x

〈�〉H x 〈εxx 〉x +
[
〈�〉x −

〈
λ2

�

〉x

+
(〈

λ

�

〉x)2

〈�〉H x

]
εzz −

(
〈α〉x −

〈
αλ

�

〉x

+
〈 α
�

〉x〈 λ

�

〉x

〈�〉H x

)
p (4.13)

Thus, continuity of σxx , εzz and p, and the arithmetic averaging of the discontinuous εxx imply three averaged material coefficients:
〈�〉H x , 〈 λ

�
〉x 〈�〉H x and 〈 α

�
〉x 〈�〉H x . Continuity of εzz and p, and the averaging of discontinuous σzz and εxx imply 〈 λ

�
〉x 〈�〉H x and two more

averaged coefficients:

〈�〉x −
〈
λ2

�

〉x

+
(〈

λ

�

〉x)2

〈�〉H x and 〈α〉x −
〈
αλ

�

〉x

+
〈 α
�

〉x〈 λ

�

〉x

〈�〉H x .

Considering the averaged material coefficients, and stress- and strain-tensor components, relations (4.9) and (4.13) have the same forms
as the first and second relations in eq. (2.2) for a point in a smooth medium, and are consistent with the interface boundary conditions.

4.3 Fluid pressure at a planar interface perpendicular to the x-axis

For p, we may write

p = −α− M−ε−
xx − α− M−εzz − M−ε−

w

p = −α+ M+ε+
xx − α+ M+εzz − M+ε+

w

(4.14)
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Discrete representation of poroelastic medium 1077

Figure 1. Positions of the field quantities (discrete approximations of the true quantities in the continuum) and material parameters. For simplicity, we indicate
the material parameters as they appear in the equations for the smoothly heterogeneous medium. The averaged parameters entering the FD scheme would
require too much space in the figure.

Before averaging ε−
w and ε+

w , we have to express ε−
xx and ε+

xx using continuous field quantities.
Using eq. (4.7) and expressing ε−

w and ε+
w , we obtain

ε−
w = −

( α

�

)−
σxx −

(
α − αλ

�

)−
εzz −

(
1

M
+ α2

�

)−
p

ε+
w = −

( α

�

)+
σxx −

(
α − αλ

�

)+
εzz −

(
1

M
+ α2

�

)+
p

(4.15)

For the arithmetic average of ε−
w and ε+

w , we obtain

〈εw〉x = −
〈 α
�

〉x
σxx −

(
〈α〉x −

〈
αλ

�

〉x)
εzz −

〈
1

M
+ α2

�

〉x

p (4.16)

Substituting the right-hand side of eq. (4.9) for σxx eventually leads to the final relation for p at the interface:

p = − 1

�x

〈 α
�

〉x
〈�〉H x 〈εxx 〉x − 1

�x

(
〈α〉x −

〈
α λ

�

〉x

+
〈 α
�

〉x〈 λ

�

〉x

〈�〉H x

)
εzz − 1

�x
〈εw〉x (4.17)

where

�x =
〈

1

M
+ α2

�

〉x

−
(〈 α

�

〉x)2

〈�〉H x (4.18)

Continuity of εzz and p, and the arithmetic averaging of the discontinuous εw imply the averaged material coefficients
− 1

�x
〈 α

�
〉x 〈�〉H x ,− 1

�x
(〈α〉x − 〈 αλ

�
〉x + 〈 α

�
〉x 〈 λ

�
〉x 〈�〉H x ) and − 1

�x
. Considering the averaged material coefficients and strain-tensor com-

ponents, relation (4.17) has the same form as the third relation in eq. (2.2).
Now it is clear why we wrote and used the constitutive equations in the form of eq. (2.2). Without having fluid pressure p explicitly

present in relations for σxx and σzz , we could not average relations for these stress-tensor components, respectively.

4.4 Stress–strain relations for planar interfaces perpendicular to the coordinate axes

We can now express the stress-strain relations for an interface perpendicular to the x-axis and for an interface perpendicular to the z-axis in
a concise form. Define the effective material coefficients

Aξ ≡ 〈�〉Hξ , Bξ ≡
〈

λ

�

〉ξ
Aξ , C ξ ≡

〈 α
�

〉ξ
Aξ

Dξ ≡ 〈�〉ξ −
〈
λ2

�

〉ξ
+
〈

λ

�

〉ξ
Bξ

E ξ ≡ 〈α〉ξ −
〈
α λ

�

〉ξ
−
〈

λ

�

〉ξ
C ξ

(4.19)

Then the stress–strain relations (4.4), (4.9), (4.13) and (4.17) for the planar interface perpendicular to the x-axis may be written as,
compare with eq. (2.2),

σxx = Ax 〈εxx 〉x + Bxεzz − C x p
〈σzz〉x = Bx 〈εxx 〉x + Dxεzz − E x p

p = −C x

�x
〈εxx 〉x − E x

�x
εzz − 1

�x
〈εw〉x

σxz = 2〈μ〉H x 〈εxz〉x

(4.20)
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1078 P. Moczo et al.

Figure 2. Schematic presentation of the configuration A with the horizontal interface between two poroelastic half-spaces. Position of the point of intersection
of the computational plane with a perpendicular line source generating only compressional waves is indicated by a star. Positions of the receivers for the vx

and vz solid particle-velocity components are indicated by solid squares and circles, respectively (their positions differ due to the staggered grid). The depicted
coordinate system serves only for simple indication of relative positions of the source, receivers and interface.

Figure 3. Source time function, and its amplitude and log Fourier spectra.

Table 1. Material parameters describing the model consisting of two homogeneous poroelastic half-spaces.

Upper half-space Lower half-space

Solid Bulk modulus, Ks (GPa) 80.0 5.2
Density, ρs (kgm−3) 2500 2250

Matrix Bulk modulus, Km (GPa) 37.0 2.2
Shear modulus, μ(GPa) 26.1 2.4
Porosity, φ 0.5 0.25
Tortuosity, T 2.0 2.0

Fluid Density, ρ f (kgm−3) 1040 1040
Viscosity, η(Pas) 0.0 0.0
Bulk modulus, K f (GPa) 2.5 2.5

Velocity Fast P wave (m s−1) 6916 1956
Slow P wave (m s−1) 1092 757
S wave (m s−1) 4157 1149

The corresponding stress–strain relations for the planar interface perpendicular to the z-axis are

〈σxx 〉z = Dzεxx + Bz〈εzz〉z − Ez p
σzz = Bzεxx + Az〈εzz〉z − Cz p

p = − Ez

�z
εxx − Cz

�z
〈εzz〉z − 1

�z
〈εw〉z

σxz = 2〈μ〉H z〈εxz〉z

(4.21)

where

�z =
〈

1

M
+ α2

�

〉z

−
(〈 α

�

〉z)2

〈�〉H z (4.22)

Recall the matrix form of the constitutive eq. (2.1) for a smoothly heterogeneous isotropic poroelastic medium:⎡
⎢⎢⎢⎣

σxx

σzz

σxz

−p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

� + α2 M λ + α2 M 0 αM
λ + α2 M � + α2 M 0 αM

0 0 2μ 0
αM αM 0 M

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

εxx

εzz

εxz

εw

⎤
⎥⎥⎥⎦
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Discrete representation of poroelastic medium 1079

Figure 4. Five positions of the horizontal planar interface in the grid labelled A, B, C, D and E. Labels A and E are framed in order to indicate that the distance
between the two positions is just one grid spacing. The source and receivers are at the same positions in the grid in all five cases.

We may write relations (4.20) and (4.21) for the interfaces in the same form:

⎡
⎢⎢⎢⎢⎢⎣

σxx

〈σzz〉x

σxz

−p

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax + C x C x

�x
Bx + C x E x

�x
0

C x

�x

Bx + C x E x

�x
Dx + E x E x

�x
0

E x

�x

0 0 2〈μ〉H x 0

C x

�x

E x

�x
0

1

�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

〈εxx 〉x

εzz

〈εxz〉x

〈εw〉x

⎤
⎥⎥⎥⎥⎥⎦ (4.23)

⎡
⎢⎢⎢⎢⎢⎣

〈σxx 〉z

σzz

σxz

−p

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dz + Ez Ez

�z
Bz + Cz Ez

�z
0

Ez

�z

Bz + Cz Ez

�z
Az + CzCz

�z
0

Cz

�z

0 0 2〈μ〉H z 0

Ez

�z

Cz

�z
0

1

�z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

〈εzz〉z

〈εxz〉z

〈εw〉z

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.24)

The stiffness matrices in relations (2.1), (4.23) and (4.24) have the same form and the same number of 7 (considering the matrix
symmetry) non-zero elements. The difference is in the number of independent elements. The matrix in eq. (2.1) has four independent
elements, whereas the matrices in relations (4.23) and (4.24) have all 7 elements independent.

4.5 Note on a non-planar interface

A non-planar smooth surface may be locally approximated by a planar interface tangential to the surface at a given point. The stiffness
matrix for a planar interface in a general orientation has all 10 (considering the matrix symmetry) elements non-zero though obviously only
7 independent. This means that all strain-tensor components are necessary for calculating each stress-tensor component at a point of the
interface. This is a considerable increase either in memory requirement or computing time. In 3-D, the increase would be more dramatic.

As in the case of the discrete representation of the material interface between elastic media (Moczo et al. 2002, 2014; Kristek et al.
2017) instead of treating explicitly a non-planar interfaces by locally tangential planar interfaces, we decide for an approximate averaging in
a grid cell.
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s s

(a)

(b)

Figure 5. Illustration of accuracy of the developed discrete representation: comparison of the horizontal component of the solid particle velocity vx calculated
by our FD scheme and the exact method by Diaz & Ezziani (2008). Labels A—E indicate the five different positions of the horizontal interface in the grid
shown in Fig. 5. The upper panel labelled a is for receiver RT, the lower panel labelled b is for receiver RR. In each of the two panels, the lower right frame
labelled A B C D E shows FD seismograms for all five positions in order to illustrate the scatter in seismograms due to different positions of the interface.
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Discrete representation of poroelastic medium 1081

Figure 6. Four different positions of the interface. Considering position A (Fig. 5) as a reference, the four positions are at distances h/6, 2h/6, 4h/6 and 5h/6,
h meaning the grid spacing, downward from A position. The source and receivers are at the same positions in the grid in all four cases.

Figure 7. Illustration of sensitivity of the developed discrete representation: comparison of the horizontal component of the solid particle velocity for two
couples of positions of the interface in the grid shown in Fig. 6. The distance between two positions is just 1/6 of the grid spacing h. The left-hand panel shows
only exact seismograms in order to visualize the small difference between the seismograms. The right-hand panel shows both the exact and FD seismograms.
The FD scheme is capable of sensing the small difference in position of the interface in the grid.

4.6 Averaging in the grid cell

We make the following decision on averaging the medium:

(1) The stiffness matrix of the averaged medium will have the same structure as matrix (2.1) except that the number of independent
elements may be different.

(2) If a grid cell contains a planar interface (between two homogeneous materials) perpendicular to the x-axis, the stiffness matrix of the
averaged medium in the cell will be that of relation (4.23) and, consequently, the stress–strain relation at the interface may be written in the
form (4.20). If a grid cell contains a planar interface (between two homogeneous materials) perpendicular to the z-axis, the stiffness matrix
of the averaged medium in the cell will be that of relation (4.24) and, consequently, the stress–strain relation at the interface may be written
in the form (4.21).
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Figure 8. Five positions of the horizontal interface in the grid differing in the angle between the interface and horizontal grid line.

(a)

(b)

Figure 9. Illustration of accuracy of the developed discrete representation: comparison of the horizontal component of the solid particle velocity vx calculated
by our FD scheme and exact method by Diaz & Ezziani (2008). The FD scheme is capable of sensing an interface no matter what the angle between the
interface and grid lines is. The upper panel labelled a is for receiver RT, and the lower panel labelled b is for receiver RR.
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Discrete representation of poroelastic medium 1083

Table 2. Material parameters describing the second model of two half-spaces with a planar interface and the model of
the lens inside an unbounded medium.

Medium 1 Medium 2

Solid Bulk modulus, Ks (GPa) 35.0 35.0
Density, ρs (kgm−3) 2650 2650

Matrix Bulk modulus, Km (GPa) 5.0 5.0
Shear modulus, μ(GPa) 11.0 11.0
Porosity, φ 0.2 0.2
Tortuosity, T 2.0 2.0

Fluid Density, ρ f (kgm−3) 70 912
Viscosity, η(Pas) 0.0 0.0
Bulk modulus, K f (GPa) 0.077 1.5

Velocity Fast P wave (m s−1) 3059 3274
Slow P wave (m s−1) 735 773
S wave (m s−1) 2274 2230

(a)

(b)

Figure 10. Illustration of accuracy of the developed discrete representation: comparison of the horizontal component of the solid particle velocity vx calculated
by our FD scheme and the exact method by Diaz & Ezziani (2008). The upper panel labelled a is for receiver RT, and the lower panel labelled b is for receiver
RR. Frames labelled A, B and C compare the FD and exact seismograms for the A, B and C positions of the horizontal interface in the grid shown in Fig. 5,
respectively. We can see very good agreement between the FD and exact seismograms. Frame labelled A B C shows only FD seismograms for the three interface
positions in order to illustrate the scatter in seismograms due to different positions of the interface within a grid cell. Because the scatter is small—due to
realistically low values of the fast P-wave velocities—the lower right frame shows a magnified part of the seismograms. Though small, the differences among
seismograms demonstrate the subcell resolution of the developed representation.
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1084 P. Moczo et al.

Figure 11. Geometry of the poroelastic lens inside a homogeneous unbounded poroelastic medium, three profiles of receiver positions (white triangles) and
position of the source (star).

Figure 12. Source time function used for the problem of the lens, and its amplitude and log Fourier spectra.

Let us write relations (4.20) and (4.21) in a joint general form:
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σxx = X X εxx + X Z εzz − X P p
σzz = X Z εxx + Z Z εzz − Z P p

p = − X P

�
εxx − Z P

�
εzz − 1

�
εw

σxz = 2 〈μ〉H z εxz

(4.25)

Here, we do not indicate averaging of the stress- and strain-tensor components. The two above requirements on averaging in the grid
cell are met by the following averages:

X X =
〈〈

� − λ2

�

〉z

+
(〈

λ

�

〉z)2

〈�〉H z

〉H x

Z Z =
〈〈

� − λ2

�

〉x

+
(〈

λ

�

〉x)2

〈�〉H x

〉H z

X Z =
〈

λ

�

〉xz

〈�〉H xz

(4.26)

X P =
〈〈

� − α λ

�

〉z

+
〈 α
�

〉z〈 λ

�

〉z

〈�〉H z

〉H x

〈 〈
α − α λ

�

〉z + 〈 α
�

〉z 〈 λ

�

〉z〈�〉H z〈
� − α λ

�

〉z + 〈 α
�

〉z 〈 λ

�

〉z〈�〉H z

〉x

(4.27)

Z P =
〈〈

� − α λ

�

〉x

+
〈 α
�

〉x〈 λ

�

〉x

〈�〉H x

〉H z

〈 〈
α − α λ

�

〉x + 〈 α
�

〉x 〈 λ

�

〉x 〈�〉H x〈
� − α λ

�

〉x + 〈 α
�

〉x 〈 λ

�

〉x 〈�〉H x

〉z

(4.28)

� =
〈

1

M
+ α2

�

〉xz

−
(〈 α

�

〉xz)2

〈�〉H xz (4.29)

The constitutive relation for the averaged medium in the grid cell may be written in the form of the constitutive relation for a smoothly
heterogeneous medium (2.1):

⎡
⎢⎢⎢⎣

σxx

σzz

σxz

−p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X + X P X P

�
X Z + X P Z P

�
0

X P

�

X Z + X P Z P

�
Z Z + Z P Z P

�
0

Z P

�

0 0 2〈μ〉H x 0

X P

�

Z P

�
0

1

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

εxx

εzz

εxz

εw

⎤
⎥⎥⎥⎦ (4.30)

The stiffness matrices in relations (2.1) and (4.30) have the same number of 7 (considering the matrix symmetry) non-zero el-
ements. The difference is in the number of independent elements. The matrix in (2.1) has four independent elements, whereas the
matrix in eq. (4.30) has all 7 independent elements. Let us recall that the stiffness matrices in relations (4.23) and (4.24) for the pla-
nar interface perpendicular to the x- and z-axes, respectively, also have 7 independent elements. This is because the problem is 2-D
dimensional.

The structure of the matrix is the most natural choice for the SG scheme. The number of algebraic operations for updating stress tensor
and fluid pressure is unchanged compared to the homogeneous or smoothly heterogeneous medium. Additional non-zero elements in the
stiffness matrix would require a more complicated scheme.

Note also that each average coefficient applies to an area of the grid cell h × h centred at a position of the correspond-
ing stress-tensor component or fluid pressure. In case of a generally heterogeneous medium, it is to be evaluated by a numerical
integration.
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Figure 13. Horizontal component of the solid particle velocity. Upper, middle and lower panels show seismograms at receivers along the upper, middle and
lower receiver profiles (Fig. 11), respectively. For each receiver, a seismogram obtained using the discontinuous Galerkin method (DG, in black) is compared
with FD seismograms obtained for two values of the grid spacing—1 m (in red) and 3 m (in green).
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Discrete representation of poroelastic medium 1087

Figure 14. The same as in Fig. 13, but for the vertical component of the solid particle velocity.
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Figure 15. Horizontal component of the solid particle velocity. Left-hand, central and right-hand panels show seismograms in the [0.15, 1.50] s time windows
at receivers along the upper, middle and lower receiver profiles (Fig. 11), respectively. For each receiver, a seismogram obtained using the discontinuous
Galerkin method (DG, in black) is compared with FD seismograms obtained for two values of the grid spacing—1 m (in red) and 3 m (in green). The chosen
time windows compare the most significant parts of the seismograms shown in Fig. 13. The amplitudes in this figure are three times larger than those in Fig. 13.
The FD and DG seismograms are in very good agreement.
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Figure 16. The same as in Fig. 15, but for the vertical component of the solid particle velocity.
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5 E Q UAT I O N S O F M O T I O N

The equations of motion may be written as

ρv̇x = σxx ,x + σxz,z − ρ f q̇x

ρv̇z = σxz,x + σzz,z − ρ f q̇z

mq̇x = −p,x − ρ f v̇x − b qx

mq̇z = −p,z − ρ f v̇z − b qz

(5.1)

where vx and vz are solid particle velocities, qx and qz are fluid particle velocities relative to the solid, dot above a symbol indicates temporal
derivative, ρ = (1 − φ) ρs + φ ρ f is the composite (or total) density, ρs and ρ f are the solid and fluid densities, respectively, m = T ρ f /φ

is the mass coupling coefficient and T is tortuosity, b = η/κ is the resistive damping (friction), η is the dynamic viscosity of fluid and κ is
the permeability.

5.1 Averaging at a planar interface perpendicular to the x-axis

For the two half-spaces in a contact, we may write equations for v̇x and q̇x as

ρ− v̇x = σ−
xx ,x + σ−

xz,z − ρ−
f q̇x

ρ+ v̇x = σ+
xx ,x + σ+

xz,z − ρ+
f q̇x

(5.2)

and

m− q̇x = −p,−x −ρ−
f v̇x − b− qx

m+ q̇x = −p,+x −ρ+
f v̇x − b+ qx

(5.3)

The averaging of eqs (5.2) and (5.3) gives, respectively,

〈ρ〉x v̇x = 〈σxx ,x + σxz,z〉x − 〈ρ f

〉x
q̇x (5.4)

and

〈m〉x q̇x = −〈p,x 〉x − 〈ρ f

〉x
v̇x − 〈b〉x qx (5.5)

Eliminating q̇x and v̇x from eqs (5.4) and (5.5), respectively, gives(
〈ρ〉x〈
ρ f

〉x −
〈
ρ f

〉x
〈m〉x

)
v̇x = 1〈

ρ f

〉x 〈σxx ,x + σxz,z〉x + 1

〈m〉x 〈p,x 〉x + 〈b〉x

〈m〉x qx (5.6)

and(
〈ρ〉x〈
ρ f

〉x −
〈
ρ f

〉x
〈m〉x

)
q̇x = − 1

〈m〉x 〈σxx ,x + σxz,z〉x − 〈ρ〉x〈
ρ f

〉x 1

〈m〉x 〈p,x 〉x − 〈ρ〉x〈
ρ f

〉x 〈b〉x

〈m〉x qx (5.7)

Equations for v̇z and q̇z may be written as

ρ− v̇z = σ−
zx ,x + σ−

zz ,z − ρ−
f q̇−

z

ρ+ v̇z = σ+
zx ,x + σ+

zz ,z − ρ+
f q̇+

z

(5.8)

and

m− q̇−
z = −p,−z −ρ−

f v̇z − b− q−
z

m+ q̇+
z = −p,+z −ρ+

f v̇z − b+ q+
z

(5.9)

The averaging of eqs (5.8) and (5.9) gives, respectively〈
ρ

ρ f

〉x

v̇z =
〈

1

ρ f
(σzx ,x + σzz,z)

〉x

− 〈q̇z〉x (5.10)

and

〈q̇z〉x = −
〈

1

m
p,z

〉x

−
〈ρ f

m

〉x
v̇z −

〈
b

m
qz

〉x

(5.11)

Eliminating q̇x and v̇x from eqs (5.10) and (5.11), respectively, gives(〈
ρ

ρ f

〉x

−
〈ρ f

m

〉x)
v̇z =

〈
1

ρ f

(
σzx ,x + σzz,z

)〉x

+
〈

1

m
p,z

〉x

+
〈

b

m
qz

〉x

(5.12)

and(〈
ρ

ρ f

〉x

−
〈ρ f

m

〉x)
〈q̇z〉x = −

〈ρ f

m

〉x〈 1

ρ f
(σzx ,x + σzz,z)

〉x

−
〈

ρ

ρ f

〉x〈 1

m
p,z

〉x

−
〈

ρ

ρ f

〉x〈 b

m
qz

〉x

(5.13)
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Figure 17. The same as in Figs 15 and 16, but for the pore pressure.
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Figure 18. Schematic presentation of the source–receiver configuration in the unbounded poroelastic medium with non-zero resistive damping. Position of the
point of intersection of the computational plane with a perpendicular line source generating only compressional waves is indicated by a star. Positions of the
receivers for the vx and vz solid particle-velocity components are indicated by solid squares and circles, respectively (their positions differ due to the staggered
grid). The depicted coordinate system serves only for simple indication of relative positions of the source, receivers and interface.

Figure 19. Source-time function, and its amplitude and log Fourier spectra.

Figure 20. The first test: comparison of our FD solution with the analytical solution based on the works by Karpfinger et al. (2005, 2009) for the unbounded
homogeneous poroelastic medium with non-zero resistive damping.
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Table 3. Material parameters describing models in the first and second tests for poroelastic media with non-zero
resistive damping.

Upper half-space Lower half-space

Solid Bulk modulus, Ks (GPa) 35.0 35.0
Density, ρs (kgm−3) 2650 2650

Matrix Bulk modulus, Km (GPa) 5.0 5.0
Shear modulus, μ(GPa) 11.0 11.0
Porosity, φ 0.2 0.2
Tortuosity, T 2.0 2.0

Fluid Density, ρ f (kgm−3) 912 70
Viscosity, η(×10−3Pas) 383 0.025
Bulk modulus, K f (GPa) 1.5 0.077
Permeability, κ(×10−12m2) 1.0 1.0

Velocity at 20 Hz Fast P wave (m s−1) 3262 3057
Slow P wave (m s−1) 2 75
S wave (m s−1) 2186 2270

Notes: The parameters of the upper half-space are used also for the unbounded medium in the first test. The velocity as
a function of frequency is given by Carcione (2015).

5.2 Equations of motion for the averaged medium

The equations of motion can be written in a matrix form

⎡
⎢⎢⎢⎣

v̇x

−q̇x

v̇z

−q̇z

⎤
⎥⎥⎥⎦ = M (x, z)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σxx ,x + σxz,z

p,x

qx

σzz,z + σxz,x

p,z

qz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

We are neglecting here the averaging of the field quantities. Define auxiliary quantities

F ξ ≡ 1〈
ρ f

〉ξ Gξ ≡ 1

〈m〉ξ
H ξ ≡ 〈b〉ξ

〈m〉ξ

Pξ ≡ 〈ρ〉ξ〈
ρ f

〉ξ Qξ ≡
〈
ρ f

〉ξ
〈m〉ξ

Rξ ≡
〈

1

ρ f

〉ξ

Sξ ≡ 〈Pξ
〉− 〈Qξ

〉
(5.15)

Then, in analogy with relation (4.30) for the constitutive relation for the averaged medium, we may write matrix M(x, z) for the averaged
medium in the form

M (x, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈F x 〉z

〈Sx 〉z

〈Gx 〉z

〈Sx 〉z

〈H x 〉z

〈Sx 〉z 0 0 0

〈Rx 〉z

〈
Gx

Rx

〉z

〈Sx 〉z

〈Px 〉z〈Gx 〉z

〈Sx 〉z

〈Px 〉z〈H x 〉z

〈Sx 〉z 0 0 0

0 0 0
〈Fz〉x

〈Sz〉x

〈Gz〉x

〈Sz〉x

〈H z〉x

〈Sz〉x

0 0 0

〈Rz〉x

〈
Gz

Rz

〉x

〈Sz〉x

〈Pz〉x 〈Gz〉x

〈Sz〉x

〈Pz〉x 〈H z〉x

〈Sz〉x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.16)

Note that each average coefficient applies to an area of the grid cell h × h centred at a position of the corresponding particle-velocity
component. In case of a generally heterogeneous medium, it is to be evaluated by a numerical integration.

6 T H E F I N I T E - D I F F E R E N C E S C H E M E

Denote the discrete grid values of the particle velocity vx , vz and qx , qz by V X, V Z and Q X, Q Z , respectively. Similarly denote the
stress-tensor components σxx , σzz, σxz and fluid pressure p by T X X, T Z Z , T X Z and P , respectively. For the grid values of the material
parameters we will use symbols defined by eqs (4.26)–(4.29) and (5.15). Fig. 1 shows positions of the field quantities and material parameters
in the grid cell. (Note that we indicate material parameters as they appear in the equations for the smoothly heterogeneous medium because
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Figure 21. Schematic presentation of the model with the horizontal interface between two poroelastic half-spaces with non-zero resistive damping. Position
of the point of intersection of the computational plane with a perpendicular line source generating only compressional waves is indicated by a star. Positions
of the receivers for the vx and vz solid particle-velocity components are indicated by solid squares and circles, respectively (their positions differ due to the
staggered grid). The depicted coordinate system serves only for simple indication of relative positions of the source, receivers and interface.

showing the averaged parameters would require unreasonably large and complicated figure.) We may approximate equations of motion (5.14)
and constitutive eq. (4.30) at the time levels n and n − 1/2, respectively. Define discrete operators of the fourth-order approximation of the
first spatial derivative with respect to x- and z-axes, respectively:

D(4)
x n

I,L ≡ 1

h

[
9
8

(
n

I+1/2,L − n
I−1/2,L

)− 1
24

(
n

I+3/2,L − n
I−3/2,L

)]
D(4)

z n
I,L ≡ 1

h

[
9
8

(
n

I,L+1/2 − n
I,L−1/2

)− 1
24

(
n

I, L+3/2 − n
I,L−3/2

)] (5.17)

Here, we present the FD schemes for vx and qx at the spatial grid position I, L + 1/2, and for p and σxx at I + 1/2, L + 1/2. The
schemes are

V Xn+1/2
I,L+1/2 = V Xn−1/2

I,L+1/2 + 1

〈Sx 〉z
I,L+1/2

�

h

{〈F x 〉z
I,L+1/2

[
D(4)

x T X Xn
I,L+1/2 + D(4)

z T X Zn
I,L+1/2

]+ 〈Gx 〉z
I,L+1/2 D(4)

x Pn
I,L+1/2

+ 〈H x 〉z
I,L+1/2

[
h

2

(
Q Xn+1/2

I,L+1/2 + Q Xn−1/2
I,L+1/2

)]}
(5.18)

Q Xn+1/2
I,L+1/2 =

⎛
⎜⎝ 〈Sx 〉z − �

2
〈Px 〉z〈H x 〉z

〈Sx 〉z + �

2
〈Px 〉z〈H x 〉z

⎞
⎟⎠

I,L+1/2

Q Xn−1/2
I,L+1/2 − 1(

〈Sx 〉z + �

2
〈Px 〉z〈H x 〉z

)
I,L+1/2

�

h

×
{(
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〈
Gx

Rx

〉z)
I,L+1/2

[
D(4)
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x Pn
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}
(5.19)

T X Xn
I+1/2,L+1/2 = T X Xn−1
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h

{(
X X + X P2

�

)
I+1/2,L+1/2

D(4)
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X Z + X P Z P

�

)
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z V Zn−1/2

I+1/2, L+1/2

−
(

X P

�

)
I+1/2,L+1/2

[
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(5.20)

Pn
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h
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X P

�

)
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I+1/2, L+1/2 +
(

Z P

�

)
I+1/2,L+1/2

D(4)
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−
(

1

�

)
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[
D(4)

x Q Xn−1/2
I+1/2, L+1/2 + D(4)

z Q Zn−1/2
I+1/2, L+1/2

]}
(5.21)

The FD schemes are computationally efficient if the resistive damping (friction) b = 0. If the resistive damping is non-zero, the schemes
require very small time step and thus become computationally inefficient. To avoid this, we can partition each of eqs (5.4), (5.5), (5.12) and
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Figure 22. Four different positions of the interface (schematically shown in Fig. 21) within one half of the grid spacing h. Two positions of the interface
with respect to the spatial grid, A and C, correspond to positions considered in Fig. 4. Seismograms in for these two positions are compared in Fig. 23 with
seismograms for positions A+ and C- that are just h/10 away from positions A and C, respectively. The source and receivers are at the same positions in the
grid in all four cases.

(5.13) into stiff and non-stiff equations as suggested by Carcione & Quiroga-Goode (1995). The corresponding FD schemes are given in
Appendix.

7 N U M E R I C A L V E R I F I C AT I O N

Because the developed discrete representation is approximate, it is necessary to test it numerically by comparing the FD seismograms
with seismograms obtained using independent verified methods. First, we will restrict the numerical tests to the case with zero resistive
damping, that is, with b = 0. We want to stress that a non-zero value would just considerably attenuate the slow P wave and consequently
mask a potential inaccuracy in the discrete representation of the interface. Eventually, we will consider a test for a non-zero resistive
damping.

7.1 Two half-spaces with a planar interface parallel with a grid plane—comparison with an exact solution

The discrete representation of the material interface between two elastic and viscoelastic materials (Moczo et al. 2002, 2014; Kristek &
Moczo 2003; Kristek et al. 2017) is capable to ‘sense’ an arbitrary position of the interface in-between two gridpoints. Here, we present a
series of numerical tests demonstrating that the developed representation of the interface between two poroelastic materials has the same
capability.

Fig. 2 shows horizontal interface of two poroelastic half-spaces, positions of receivers and the point of intersection of the computational
plane with a perpendicular line source generating only compressional waves. The source is applied to both solid and fluid phases. Fig. 3
shows the source-time function. Table 1 lists material parameters. We chose large values of the fast P-wave velocities in the half-spaces and
a large value of the velocity contrast at the interface in order to enhance potential inaccuracy of the developed representation. The large
velocities also make it possible to see differences due to different positions of the interface within one grid cell. Considering the effective
maximum source frequency 5 Hz, the corresponding minimum wavelength is 151 m. The time step is 0.0011 s and spatial grid spacing is
14 m. We chose this grid spacing in order to safely avoid a grid dispersion of the slow P wave which is not attenuated in the case of the
poroelastic medium (medium with zero resistive damping b). Fig. 4 shows five positions of the horizontal planar interface in the grid. The
source and receivers are at the same positions in the grid in all five cases. Fig. 5(a) shows the horizontal component of the particle velocity
vx at receiver RT for all five positions of the interface. The black-line FD seismograms are compared with the red line exact seismograms
calculated using the code Gar6more2D developed by Diaz & Ezziani (2008). The bottom right panel compares the five FD seismograms in
order to illustrate the differences due to different positions of the interface with respect to the grid, source and receiver. Fig. 5(b) shows the
same but for receiver RR. It is clear from both figures that the FD seismograms are in very good agreement with the exact seismograms. In
order to further demonstrate the sensitivity of the developed representation, we performed additional tests. They are indicated in Fig. 6. Again
for the fixed positions of the source and receivers in the grid, we consider four different positions of the interface: taking the A position (Fig. 4)
as a reference, the four positions are at distances h/6, 2h/6, 4h/6 and 5h/6, h meaning the grid spacing, downward from the A position.
This means that we have two couples of positions with the distance between two positions in each couple just h/6. The left-hand panel
of Fig. 7 compares the exact seismograms themselves in order to show the small difference due to positions, whereas the right-hand panel
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s s

s

Figure 23. Comparison of our FD solutions (vx ) for the four interface positions, A, A+, C- and C, shown in Fig. 22. Because the distance between interface
positions A and A+, and positions C and C-, is just one-tenth of the grid spacing, h/10, seismogram for A should be close to seismogram for A+, and,
analogously, seismogram for C should be close to seismogram for C-. This is shown in the upper row of the figure. Because distance between interface positions
A and C is h/2, we should clearly see a difference between seismograms for A and C. Moreover, we should also see that this difference is larger than the
differences between seismograms for A and A+ or seismograms for C and C+. This is obvious from comparison in frame labelled A A+ C- C and two magnified
parts of seismograms. This illustrates the subcell resolution of the developed representation also for media with non-zero resistive damping.

compares the FD seismograms with the exact seismograms. The comparison confirms the remarkable accuracy/sensitivity of the discrete
representation.

7.2 Two half-spaces with a planar interface in an oblique position with respect to the spatial grid—comparison with an
exact solution

Here, we demonstrate the capability of the discrete representation to ‘sense’ an oblique position of the interface in the grid. We consider
the same poroelastic materials in planar contact and the same type of the source as in the previous section. Fig. 8 shows five different
orientations of the interface with respect to the horizontal grid line: 5◦, 15◦, 25◦, 35◦ and 45◦. We consider two positions of the interface for
the 45◦ angle—one with the interface coinciding with the cell diagonal and one shifted a little bit from the diagonal. Fig. 9 compares the
FD seismograms with the exact seismograms calculated with the Gar6more2D code (Diaz & Ezziani 2008). As in the case of the arbitrary
position of the horizontal interface with respect to the spatial grid, it is obvious that the discrete representation can sufficiently accurately
model an oblique position of the interface in the grid.
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7.3 Two half-spaces with realistic values of the fast P-wave velocities—comparison with an exact solution

As we explained before, the large values of the fast P-wave velocities in the half-spaces and the large value of the velocity contrast at the
interface made it possible to perform stringent tests of accuracy and to demonstrate the subcell resolution of the developed representation.
In order to include also more realistic material parameters, we will compare our FD solution with the exact solution for a model of two
half-spaces with material parameters specified in Table 2. Note, however, that the material-parameter values in Table 2 do not pose such a
stringent accuracy test as the material parameters considered so far.

Except the values of the material parameters we consider the configuration shown in Fig. 2, the A, B and C interface positions shown
in Fig. 4, and source-time function shown in Fig. 3. Fig. 10 compares the horizontal component of the particle velocity vx obtained with
our FD modelling and the Gar6more2D code developed by Diaz & Ezziani (2008). The upper panel labelled a is for receiver RT, the lower
panel labelled b is for receiver RR. In each of the two panels, frame labelled A compares the FD seismogram (in black) and the exact
seismogram (red) for the A interface position. Similarly, frames labelled B and C compare the FD and exact seismograms for the B and C
interfaces positions. Frame labelled A B C shows the FD seismograms for the three positions in order to illustrate the scatter in seismograms
due to different positions of the interface within one grid cell. Because the scatter is small—due to realistic low values of the fast P-wave
velocities—the lower right frame shows a magnified part of the seismograms. Though small, the differences among seismograms demonstrate
the subcell resolution of the representation. It is clear from all comparisons that the FD seismograms are in very good agreement with the
exact seismograms.

7.4 A model of a lens

It is obvious from the previous tests that our discrete representation is capable to model a planar interface. Here, we verify the scheme for a
model of a lens, that is, a 2-D heterogeneity. Fig. 11 shows geometry of the poroelastic lens inside a homogeneous unbounded poroelastic
medium, three receiver profiles and position of the source. Table 2 lists material parameters of the lens (medium 1) and the surrounding
medium (medium 2). Fig. 12 shows the used source-time function. The effective frequency content of the source signal is up to 20 Hz. The
corresponding minimum wavelength is approximately 36 m. We compare our FD seismograms with those obtained by DG method, fifth-order
accurate both in space and time, using a triangular mesh (de la Puente et al. 2008). The upper, middle and lower panels of Fig. 13 shows the
horizontal component of the solid particle velocity at receiver positions along the upper, middle and lower receiver profiles, respectively, shown
in Fig. 11. For each receiver position, there are three seismograms shown: the reference DG seismogram (black) and the FD seismograms for
the two different discretizations—one with the grid spacing 3 m (green) and the other with the grid spacing 1 m (red). Time step 0.00016 s
was used in both cases. Similarly, Fig. 14 compares the vertical component of the solid particle velocity. In both Figs 13 and 14, the different
solutions are in different colours and the seismograms are superimposed. Thus, we can see very good overall agreement between the DG and
FD seismograms. In order to have a more detailed comparison of the three solutions for the most significant parts of seismograms, Figs 15
and 16 show three-times amplified seismograms in the [0.15, 1.50] s time windows for the horizontal and vertical components of the solid
particle velocity, respectively. Fig. 17 shows an analogous picture of the pore pressure. The level of agreement is convincing even in this
zoom-out comparison.

7.5 Unbounded homogeneous poroelastic medium with non-zero resistive damping

Our goal is to test our discrete representation of material interfaces between poroelastic media with non-zero resistive damping. Because,
however, we have not found an independent solution for a model with a material interface between two media with non-zero resistive damping,
we split verification into two tests: in the first test, we consider an unbounded medium and compare our FD solution with the analytical
solution based on the works by Karpfinger et al. (2005, 2009); we have elaborated the corresponding computer code. In the second test, we
demonstrate the subcell resolution of our discrete representation of material interface.

Table 3 shows material parameters of two media. The parameters of the upper half-space are used for the unbounded medium in the first
test.

The source–receiver configuration for a 2-D modelling is shown in Fig. 18. The source-time function is shown in Fig. 19.
Fig. 20 shows comparison of our FD seismograms with those obtained using the exact method developed by Karpfinger et al. (2005,

2009). Note that the analytical solution is calculated in the frequency domain and then converted to the time domain using the inverse Fourier
transform. The level of agreement between the two solutions is very good.

7.6 Two half-spaces with a planar interface parallel with a grid plane—the case of non-zero resistive damping

As explained in the beginning of the previous section, for the model of an interface between two poroelastic media with non-zero resistive
damping we have only our FD solution available. The presented test is, however, important because it convincingly demonstrates the subcell
resolution of the developed discrete representation of the interface also in media with non-zero resistive damping.
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We consider a planar contact of two media. Material parameters in the upper and lower half-spaces are shown in Table 3, schematic
configuration of the source, receiver positions and interface in Fig. 21, and four positions of the interface within one half of the grid spacing
in Fig. 22. The source-time function is the same as in the previous test, see Fig. 19.

Fig. 23 compares FD seismograms, vx component of the solid article velocity, for four positions of the material interface. As explained
in the legend of Fig. 23, the comparison clearly demonstrates the subcell resolution of the developed discrete representation of the material
interface also for media with non-zero resistive damping.

8 C O N C LU S I O N S

We have developed a discrete representation of a strong material heterogeneity in the poroelastic medium. The representation makes it possible
to model an arbitrary shape and position of an interface with subcell resolution in the spatial grid. The computational efficiency of the FD
grid is unchanged compared to the scheme for a homogeneous and smoothly heterogeneous medium because the number of operations for
updating stress-tensor, fluid pressure and particle velocities is the same. The only difference is that it is necessary to evaluate averaged grid
material parameters once before the FD simulation itself. Thus, the developed representation extends the possibilities of the FD modelling of
seismic wave propagation in the poroelastic medium similarly as the representations developed for the elastic and viscoelastic media (Moczo
et al. 2002, 2014; Kristek & Moczo 2003; Kristek et al. 2017).
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Université, pp. 157.

Carcione, J.M., 1998. Viscoelastic effective rheologies for modelling wave
propagation in porous media, Geophys. Prospect., 46, 249–270.

Carcione, J.M., 2015. Wave Fields in Real Media: Wave Propagation in
Anisotropic, Anelastic, Porous and Electromagnetic Media, 3rd edn. El-
sevier.

Carcione, J.M. & Helle, H.B., 1999. Numerical solution of the poroviscoelas-
tic wave equation on a staggered mesh, J. Comp. Phys., 154, 520–527.

Carcione, J.M., Morency, C. & Santos, J.E., 2010. Computational
poroelasticity—a review, Geophysics, 75, 75A229–75A243.

Carcione, J.M. & Quiroga-Goode, G., 1995. Some aspects of the physics
and numerical modelling of Biot compressional waves, J. Comp. Acoust.,
3(4), 261–280.

Chaljub, E., Maufroy, E., Moczo, P., Kristek, J., Hollender, F., Bard, P.-Y.,
Priolo, E., Klin, P., et al., 2015. 3D numerical simulations of earthquake
ground motion in sedimentary basins: testing accuracy through stringent
models, Geophys. J. Intl., 201, 90–111.

Chaljub, E., Moczo, P., Tsuno, S., Bard, P.-Y., Kristek, J., Käser, M., Stu-
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A P P E N D I X

Partitioned FD scheme

Instead of schemes (5.18) and (5.19), the following partitioned schemes are applied in numerical simulations for poroelastic media with
non-zero resistive damping, that is non-zero b in eq. (5.1):
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The FD schemes (5.20) and (5.21), that is the discrete approximations of the constitutive relations, remain unchanged.
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