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ABSTRACT 

Numerical modelling of seismic wave propagation, earthquake ground motion, seismic ambient noise 

and earthquake rupture dynamics are all crucial tasks in any comprehensive investigation of 

seismological and diverse geophysical processes in the Earth’s interior as well. The increased 

resolution power of recent measurements requires faithfully numerically simulated seismic wavefields 

in realistic models of the Earth that take into account its complex rheology and geometry. This is well 

reflected by outstanding recent advances in numerical modelling. Three complementary approaches of 

paramount importance are the finite-difference, spectral-element and discontinuous Galerkin methods. 

In order to gain basic insights both on wave propagation features and on rupture dynamics, the 

boundary element methods are useful companions.   

Keywords: seismic waves, numerical modelling, finite-difference, spectral-element, discontinuous-

Galerkin, boundary elements. 

INTRODUCTION 

Wave-propagation configurations in seismology that we need to numerically simulate include a) 

material composition of a computational model, b) geometry of the model, and c) type of wave motion. 

Material constituents can be a single-phase solid (elastic, viscoelastic, elastoplastic, elastoviscoplastic, 

isotropic, anisotropic), single-phase fluid (liquid or gas, non-viscous or viscous) and multi-phase 

medium (poroelastic or poroviscoelastic with single- or two-phase pore fluid and zero or non-zero 

resistive friction). The model geometry can include geometry of borders of the computational region, 

free-surface topography, geometry of internal material interfaces and the faulting surfaces. Wavefield 

of interest can be acoustic or elastic produced by explosions, rupturing faults or random sources. 

The three major factors a) – c) determine both A) structure of the controlling and constitutive 

equations in terms of temporal and spatial derivatives, and B) boundary conditions. 

A) and B) are the factors that primarily determine time-space discretization of the model and a

computational or numerical-modelling scheme. 
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Development of the numerical-modelling methods since the early 1970’s reflects the above aspects 

of the problem. Earthquake seismology, structural seismology and exploration seismology have, 

however, in addition to many common aspects, also specific priorities. This is reflected by specific 

attention paid to, e.g., anisotropy, poroelasticity, small-scale heterogeneities, acoustic waves, seismic 

ambient noise, explosive sources, and rupturing faults. 

The main general requirement is the optimal balance of three aspects – sufficiently faithful model, 

accuracy, and computational efficiency. 

All these aspects, various needs and priorities powered the development of the numerical-modelling 

approaches. We address here three significant time-domain methods – finite-difference method (FDM), 

spectral-element method (SEM) and discontinuous Galerkin method (DGM). We briefly include the 

boundary integral equation method (BIEM). For the lack of space, we do not address pseudospectral, 

finite-element, finite-volume and other methods. 

None of the methods is the best in terms of the general requirements and important wave-

propagation configurations. A research team focused on investigating the Earth’s structure or 

seismological phenomena should properly consider which method is the most suitable for the problem 

under scrutiny. 

The books by Fichtner (2011), Moczo et al. (2014) and Igel (2017), dedicated to the numerical 

modelling of seismic wave propagation, can be recommended as related reading. 

 

THE FINITE-DIFFERENCE METHOD 

 

The FDM is, in fact, a global name for a large family of numerical-modelling methodologies based on 

the one unifying concept – approximating equations and boundary conditions by a FD scheme (FDS). 

The complete FD methodology must comprise a time-space grid, schemes for interior grid points, points 

at and near the Earth’s free surface, points at and near the other borders of the grid, a rheological model 

of the medium, discrete representation of smooth and discontinuous material heterogeneity, discrete 

representation of a wavefield source. Individual FD methodologies that are being used differ in one or 

several these constituents. Rarely they comprise all the state-of-the-art ingredients. More often they 

prefer local (lab, group, single author) methodology due to tradition or the need to “sell” own solutions. 

Development of FDM until 2013 is comprehensively presented in the book by Moczo et al. (2014). 

Most of terms and concepts used here are explained in the book. FDM has been intensively developing 

in recent years. We restrict here to several essential contributions. FDM has been developing 

considerably since then. 

 

Quest for the Best Approximations and Stencils 

 

The time-space staggered grid (SG) is fully consistent with the structure of velocity-stress (VS) 

equations for an isotropic medium. Because in many problems it is still reasonable to consider the 

isotropic medium, there is strong recent effort to find more accurate-and-efficient SG schemes for 

modelling acoustic and seismic waves. Interestingly, the most intensive and remarkable development 

has been ongoing in the exploration seismology (mainly Yang Liu, Mrinal Sen, their collaborators and 

several other Chinese seismologists). The key problem is to reach 1) the same high-order accuracy in 

space and time, in all propagation directions and in a wide range of wavenumbers, 2) optimal balance 

between increasing order and computational demands. Schemes with optional order of temporal and 

spatial accuracy and very good properties (accuracy and efficiency) were developed independently by 

Chen et al. (2021) for acoustic waves and by Zhou et al. (2021) for elastic waves. Both schemes are 

based on selective applications of the cross (axial) and cross-rhombus approximations to different first 

spatial derivatives, and standard 2nd-order cross approximation to first temporal derivatives. Importantly, 

Zhou et al. (2021) used a decoupled VS formulation of the equation of motion and constitutive law. 

What remains to be properly addressed, is applicability of the new schemes to strongly heterogeneous 

media (as indicated, e.g., by Etemadsaeed et al. 2016) and geometrically complex boundary conditions. 

Anisotropy and/or a deformation of the spatial grid imply that the equations can include spatial 

derivatives of all particle-velocity and stress components in all directions. 

Lebedev (or fully-staggered) grid is consistent with the structure of the equations – spatial 

derivatives are as natural as on the SG and do not require interpolations. Lebedev grid in 3D is composed 
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of 4 standard SG grids which decouple in an isotropic medium. de la Puente et al. (2014) used vertically 

deformed Lebedev grid and mimetic FD operators to include topography of the free surface. 

The collocated grid is an alternative to Lebedev grid. Wei Zhang, Xiaofei Chen and their 

collaborators developed FD methodology to include free-surface (FS) topography, anisotropy and 

poroelasticity. 

 

Challenging Free-surface Topography 

 

Implementation of the FS topography is necessary because in many cases the FS topography can 

significantly affect seismic wavefield. At the same time, the implementation is still a nontrivial challenge. 

There are three basic types of approaches: 1) fictitious (virtual) values of stress, particle velocity 

and material parameters above FS are used; the same stencil is used at all grid points (except, e.g., PML 

zone), 2) no fictitious values above FS; different stencils are used at grid points at and near FS, and in 

interior, 3) hybrid approach in which FDM is replaced by other method at and near FS. 

The first approach is probably best represented by Zhang et al. (2012a,b) and Sun et al. (2016, 2018, 

2019) who developed the traction-image method using the FS-conforming collocated curvilinear grid, 

dispersion-relation-preserving MacCormack scheme, and conservative form of divergence. The very 

important and distinctive feature of the approach is the fact that the curved grid is deformed in all three 

directions in order to conform with geometry of FS, that is, not only in the vertical direction. This is one 

of the reasons, together with imaging traction (nor just stress) components, why Zhang et al. can reach 

stability and accuracy even for rough topography. Building up on this approach, Zang et al. (2021) 

developed a promising overset grid FD method which combines background rectangular grid with a few 

layers of a generally deformed grid fitting topography of FS. Gao et al. (2015) presented a staggered-

grid immersed-boundary approach in the 3D follow-up of the approach by Lombard et al. (2008). They 

calculate fictitious values in vacuum using boundary and compatibility conditions and inject them into 

an interior scheme applied at and near FS. 

In the approach with no fictitious values, de la Puente et al. (2014) presented a FD scheme based 

on the velocity-stress formulation but overcoming limitations of the standard staggered grid. They use 

a vertical deformation to conform FS topography, Lebedev grid, and mimetic FD operators. Shragge & 

Konuk (2020) used tensorial formulation to develop a novel system of semianalytic velocity-stress 

equations for a family of vertically deformed grids and a corresponding FS condition. They use Lebedev 

grid and mimetic approximations to develop the corresponding FD scheme. 

Lisitsa et al. (2016) developed a hybrid approach combining DGM on a polyhedral mesh and FDM 

on rectangular non-staggered and standard staggered grids in order to implement both complex near-

surface material heterogeneity and FS topography.  

 

Material Heterogeneity and Rheology 

 

Implementation of sharp internal material interfaces is another challenging task in FD modelling. It is 

important to have sufficiently accurate implementation with sub-cell resolution. The latter means that a 

FD scheme should be capable to “sense” an arbitrary shape and position of the interface in the uniform 

grid. Including different positions within one grid cell. Two important approaches have been developed 

recently. 

Mittet (2017) correctly noted that the wavefields and material-parameter fields should be treated 

consistently. He suggested to use the wavenumber representation of a properly band-limited Heaviside 

step function (to the maximum wavenumber allowed for the grid) and transform it to the space domain. 

Alternatively, a fine-grid model can be created that is low-pass filtered to remove wavenumbers 

inappropriate for the coarse simulation grid. The fine grid is then sampled at the required coordinates 

for the coarse grid. Mittet (2021) elaborated clever analysis of accuracy of the implementation. 

Moczo et al. (2014, 2019), Kristek et al. (2017, 2019) and Gregor et al. (2021) developed 

orthorhombic representations of strongly heterogeneous elastic, viscoelastic a poroelastic media with 

material interfaces. The main idea is to best represent smooth and discontinuous material heterogeneity 
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in the FD modelling using the standard staggered-grid scheme (4th-order accurate in space, 2nd-order 

accurate in time). All schemes keep computational efficiency of the corresponding velocity-stress or 

velocity-pressure-stress staggered grid schemes for smoothly and weakly heterogeneous media. The 

viscoelastic medium has rheology of the generalized Maxwell body (GMB-EK, equivalent to the 

generalized Zener body). The poroelastic medium can have zero resistive friction or non-zero resistive 

friction or JKD frequency-dependent permeability and resistive friction. All FD schemes are capable of 

sub-cell resolution. Accuracy, including sub-cell resolution capability, was tested against SEM, DGM, 

analytical and semi-analytical methods. 

Kristek et al. (2018) and Moczo et al. (2019) demonstrated the need and importance of 

geometrically and rheologically complex models in the quest for identification of key structural 

parameters and key characteristics of earthquake ground motion. These are necessary in an effective 

identification of the potential of local surface sedimentary structures to cause anomalous ground motions 

and site effects of earthquakes.  

Alkhimenkov et al. (2021) developed a comprehensive von Neumann stability analysis for a class 

of FD schemes for Biot’s equations for a poroelastic medium. 

Models consisting of homogeneous or weakly heterogeneous layers/blocks often fail to reproduce 

complexity/features of observed seismic wave fields, particularly at higher frequencies. This is partly 

because they do not capture small-scale variations. The small-scale heterogeneities can be modelled as 

correlated random fields. Small-scale heterogeneities have been considered in several recent studies. 

For example, Bydlon & Dunham (2015) studied the effects of geometric and material heterogeneity on 

the rupture process and resulting high-frequency ground motions in the near-fault region, Vyas et al. 

(2018) investigated coherence of Mach waves radiated by supershear ruptures, Savran & Olsen (2019) 

simulated ground motions during 2008 Chino Hills earthquake, Hirakawa et al. (2016) and Scalise et al. 

(2020) studied generation of shear waves during underground explosions. 

Small-scale heterogeneities pose a new modelling challenge because they can formally require 

smaller grid spacing and/or time step. Yet, the lowest S-wave speed occurs only at a few points. Grid 

spacing is formally further constrained by requirement of proper capturing effects of small-scale 

heterogeneities on wavefield. Both above aspects of modelling are still to be investigated. 

 

Wavefield Excitation 

 

Spontaneous rupture propagation poses a specific challenge for FDM. The well-known traction-at-split 

node (TSN) method is still considered the most accurate approach. Zhang et al. (2014) implemented 

TSN into 3D collocated-grid FD scheme for non-planar ruptures. Zhang et al. (2016) improved 

implementation of the boundary conditions at intersections of fault with FS, and Zhang et al. (2020) 

optimized the code for GPUs. 

Koene et al. (2020) developed a consistent implementation of point sources at arbitrary position in 

the spatial FD grid. 

 

Discontinuous Grids 

 

Discontinuous grid can significantly reduce the number of arithmetic operations and memory. As 

explained by Moczo et al. (2014), the effort had been for a long time focused on interpolating field 

values at missing grid positions. Recently it is mainly about the stability of a contact of the finer and 

coarser grids in heterogeneous medium. A fully satisfactory solution is still to be found. Another 

important aspect is the local time-space refinement. We refer to Kostin et al. (2015), Li et al. (2015), 

Fan et al. (2015), Nie et al. (2017) for more details. 

 

THE SPECTRAL-ELEMENT METHOD 

 

Wave Propagation 

 

Fundamentals of SEM applied to the numerical simulation of seismic wave propagation for Earthquake 

Ground Motion (EGM) prediction are summarized in the book of Moczo et al. (2014) and extensive 

reviews can be found in the references therein. 
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As often stated, SEM combines the geometrical flexibility of FEM with the accuracy of spectral 

methods. This very general assertion has been refined and somewhat softened in recent studies. For 

example, Chaljub et al. (2015) have evidenced that despite the fact that SEM has the ability to account 

for physical discontinuities in material properties, just like FEM, the lack of flexibility related to the use 

of tensorized elements (deformed quadrangles in 2D, hexahedra in 3D) can lead to large numerical errors 

whenever interfaces cannot be explicitly discretized in the meshing process. This is of particular 

importance for the accurate simulation of surface waves diffracted off strong lateral contrasts close to 

the surface (e.g. basin or valley edges). More generally, the mis-representation of small-scale features 

of the propagation medium at the discrete level is one of the known source of epistemic uncertainty for 

EGM assessment with SEM, as it is with any other grid-based method. A way to solve the sub-cell 

representation issue is to design effective media through homogenization, generally in a pre-processing 

stage. The most general approach, so-called Two-Scale Homogenization (TSH), leads to fully 

anisotropic effective media which can easily be implemented in SEM (see Capdeville et al. 2020 for a 

review). TSH can in principle be applied to most of the realistic configurations considered for EGM 

applications (see Cupillard & Capdeville, 2018), although it still has to be evaluated in situations which 

combine small-scale heterogeneities close to the free-surface (possibly including variations of the 

surface itself) superimposed on a background medium with strong velocity contrasts. 

Whenever the propagation medium can be successfully homogenized, Chao et al. (2020) show that 

very high polynomial orders can be used in SEM (up to 40!) without altering its computational efficiency. 

This suggests that the process of homogenization yields smooth wavefields, the discretization of which 

can then benefit from the spectral accuracy of SEM.       

In other situations, mainly when the geometry can neither be accurately represented by hexahedra 

nor simplified through homogenization, SEM can be efficiently coupled to other methods, in particular 

FEM and DGM, which also rely on variational formulations. Such example of hybrid methods, using a 

mortar element coupling approach, has been proposed by Brun et al. (2021) to model the seismic 

response of concrete dams in the linear and non-linear regimes. Another motivation to couple SEM with 

DGM arises for seismic wave propagation in media with fluid regions having either complex geometries 

or non-linear dynamics (Terrana et al., 2018; Brissaud et al., 2017). One reason for such coupling is that 

the discretization of fluid regions in SEM requires a specific, potential formulation of the wave equation 

and an explicit representation of the fluid-solid interfaces which cannot be handled through 

homogenization. 

 

Earthquake Rupture Dynamics 

 

Building up on the work of Komatitsch and Vilotte (1998) on SEM for wave propagation, the capability 

to simulate dynamic earthquake ruptures in SEM was developed in 2D by Ampuero (2002) and 

implemented in the open-source code SEM2DPACK (https://github.com/jpampuero/sem2dpack), and 

by Festa and Vilotte (2006). It was extended to 3D by Kaneko et al. (2008) and implemented in the 

open-source code SPECFEM3D (https://github.com/geodynamics/specfem3d). 

A non-trivial achievement of these early works was to show that SEM is well adapted for highly 

non-linear problems with non-smooth solutions (discontinuous high-order derivatives near the rupture 

front). The method was later extended to earthquake problems with non-linear rheologies in the medium 

surrounding the fault (Gabriel et al., 2013). Developments in the past ~5 years are summarized below, 

related to methodological aspects and to the insights on earthquake physics they have enabled. 

Recent methodological developments of SEM for rupture dynamics include: the extension to non-

planar fault systems discretized by unstructured meshes (Galvez et al., 2014), the simulation of dynamic 

rupture interacting with off-fault continuum damage (Xu et al., 2015), the modeling of transient gravity 

signals produced by earthquakes (Harms et al., 2015), an adjoint method for finite source inversion in 

heterogeneous media (Somala et al., 2018), and the coupling between dynamic SEM and quasi-static 

BEM (Boundary Element Method) for the simulation of earthquake cycles (Galvez et al., 2020). 

Developments in progress include the joint simulation of earthquake cycles, fault growth and 

evolution of fault damage zones, which is a highly non-linear problem spanning a very wide range of 

time-scales and length-scales. An outstanding bottleneck in applications of SEM to earthquake dynamics 

can be mesh generation. The method is based on the so-called split-node approach (e.g. Day et al., 2005) 

and hexahedral spectral elements. It requires specialized treatment during the generation of the spectral 

https://github.com/jpampuero/sem2dpack
https://github.com/geodynamics/specfem3d
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element mesh, which can be complicated in geometries involving narrow dip angles, such as branched 

fault systems and shallow-dipping faults. Narrow angles also limit the time step size, increasing the 

computational cost, which could be addressed by local time stepping, i.e. integration schemes that allow 

for different time step sizes in each element (Rietmann et al., 2017). 

SEM has enabled several recent advances in earthquake physics, including: a new theory describing 

the dynamics of very large earthquakes (Weng and Ampuero, 2019), the effect of mixed-mode rupture 

(oblique slip) on earthquake speeds (Weng and Ampuero, 2020), the effects of fault damaged zones on 

dynamic rupture (Oral et al., 2019; Huang et al., 2014, 2015), the limiting effect of seismogenic width 

on the thickness of fault damage zones (Ampuero and Mao, 2017) and on the distance ruptures can jump 

across fault stepovers (Bai and Ampuero, 2017). SEM has also facilitated synergistic studies of the 2011 

Tohoku, Japan earthquake, by combining geophysical observations, laboratory experiments and 

numerical simulations (Galvez et al., 2014, 2016; Hirono et al., 2016; Tsuda et al., 2016). 

 

THE DISCONTINUOUS GALERKIN METHOD 

 

The Main Methodological Advances 

 

The Discontinuous Galerkin (DG) method was first introduced for the neutron transport equation using 

high-order Runge-Kutta integration schemes and subsequently extended to general hyperbolic systems 

(Hesthaven and Warburton, 2008).  

Due to the spatially local character of its discrete high-order accurate operators, DG allows to use 

boundary conforming curvilinear (Warburton, 2013) or unstructured meshes composed of triangles and 

tetrahedra which simplifies accounting for complex geological structures or complex topography, such 

as volcanoes, sedimentary basins, fault and fracture zones, geological interfaces and sharp impedance 

contrasts (e.g., Mercerat & Glinsky, 2015; Gabriel et al., 2020). DG’s use of numerical fluxes, which do 

not impose any field continuity across their boundaries, allows to naturally include non-linear interface 

conditions, arising, e.g., in dynamic earthquake rupture problems (Tago et al., 2012; Pelties et al., 2012). 

For modelling wave phenomena, DG schemes are advantageous as they exhibit low numerical 

dispersion and the flux-based formulation additionally introduces numerical dissipation which scales in 

accordance with the cell size and polynomial degree (Kopriva et al., 2017). 

The cell-wise local character of DG can be readily combined with an Arbitrary high-order 

DERivative (ADER) time integrator, leading to high-order accuracy in time within a single-step. This 

approach was recently extended for non-linear problems with a-posteriori subcell limiting and finite 

volume (FV) schemes (Reinarz et al., 2019).  

Recently, DG schemes have become increasingly popular for seismic wave propagation and 

dynamic earthquake rupture simulations on large-scale high-performance computing (HPC) 

infrastructure (Wilcox et al., 2010; Breuer et al., 2014; Heinecke et al., 2014). This increase in interest 

using DG in HPC applications is attributed to (i) the easy and efficient implementation of local time 

stepping schemes (Uphoff et al., 2017); (ii) straight-forward inclusion of adaptive mesh refinement 

(Burstedde et al., 2011); and (iii) on-node hardware optimisations, for example through exploiting 

equivalent sparsity patterns and optimal index permutations for temporary tensors (Uphoff & Bader, 

2020). The optimisation of the ADER-DG scheme has been extended to different rheologies including 

viscoelasticity and anisotropy (Uphoff & Bader, 2016, Wolf et al., 2020). 

Using DG, large-scale and geometrically and rheologically complicated wave propagation and 

dynamic rupture simulations can be performed in a few hours on today’s (and tomorrow’s, e.g., 

Dorozhinskii & Bader, 2021) supercomputers. 

 

Earthquake Rupture Dynamics 

 

Understanding the dynamics of earthquakes and faults poses a multi-scale, multi-physics problem with 

profound societal implications, including secondary effects with unforeseen hazard complexity. 

Earthquakes can be represented as frictional shear fracture of brittle solids under compression along 

internal boundaries of pre-existing weak fault interfaces. Rupture dynamics computations can constrain 

earthquake scenarios based on constitutive laws, initial stress conditions, lithology, and fault geometries. 

This provides a physics-based understanding of how earthquakes start, propagate, and stop. During the 
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highly non-linear interaction of frictional failure and seismic wave propagation (e.g., Gabriel et al., 2012) 

computational models may, in addition, include multi-physics processes on- and off the fault, like off-

fault deformation or thermal pressurization of rock pore fluids (e.g., Wollherr et al., 2018).  

DG methods have been particularly impactful in this context having the potential to overcome the 

limitations of short-term (incomplete) earthquake data by incorporating heterogeneous field data and 

laboratory measured rock behaviour across geometrically complex faults. Community efforts, inspired 

by the wave propagation community, have been rigorously verifying various numerical techniques for 

dynamic rupture problems of increasing complexity (Harris et al., 2018), but also highlighted the 

difficulties of treating complexities such as branching and intersecting fault systems. In contrast to the 

typically applied traction at split-node approach, DG methods solve for the frictional sliding via fault-

flux approximations.  In the ADER-DG method the inverse Riemann problem (LeVeque, 2002) is solved 

at fault element interfaces, in which the exact solution is modified to incorporate frictional boundary 

conditions such as slip-weakening or rate-and-state-dependent behaviour. Solving the inverse Riemann 

problem inherits the favourable numerical properties from the exact Riemann solver or Godunov upwind 

flux which exhibits a very selective numerical dissipation for first-order hyperbolic problems (Chan & 

Warburton, 2017) subduing spurious high frequency oscillations while minimally affecting physically 

meaningful frequencies (Pelties et al., 2014). 

High-resolution strong ground motion and physics-based dynamic earthquake rupture modelling 

has been advanced significantly by, and in turn contributed to, large-scale HPC: Recent computational 

advances now allow to capture non-linear rupture dynamics on complex faults up to the scale of 

megathrust events. DG earthquake simulation “hero runs” reach close to 50% peak performance on 

current multi-PFLOPS supercomputing systems (Uphoff et al., 2017) and cover physical scales which 

can be linked to the mechanical processes of tsunami generation and geodynamic processes (van Zelst 

et al., 2019; Ulrich et al., 2020; Madden et al., 2020). Such large-scale dynamic rupture models can 

simultaneously capture seismic, geodetic (and tsunami) observations during moderate (Palgunadi et al., 

2020) and large earthquakes (Wollherr et al., 2019; Ulrich et al., 2019a,b, 2020). 

 

Future Developments 

 

HPC empowered computational seismology and earthquake modelling is a key tool to better understand 

the structure of Earth’s interior and sources of seismic energy. It is becoming an important part of the 

rapid earthquake response toolset by delivering physics-driven interpretations that can be integrated 

synergistically with data-driven efforts. On-going challenges include computational efficiency 

(resolving smaller scale heterogeneities affecting the high frequencies of the wave field), including the 

multi-physics processes of fault zone complexity, addressing model sensitivities and the need for open-

source community solutions. Earthquake fault zones are more complex, both geometrically and 

rheologically, than an idealised infinitely thin plane embedded in linear elastic material, potentially 

requiring to fully model volumetric fault zone shearing during earthquake rupture, which includes 

spontaneous partition of fault slip into intensely localized shear deformation within weaker (possibly 

cohesionless/ultracataclastic) fault-core gouge and more distributed damage within fault rocks and 

foliated gouges (Gabriel et al., 2020). Combination with emerging machine learning approaches may 

close the gap of data quality in real time conditions, boosting our understanding of earthquake source 

processes and the associated ground shaking. In the near future, HPC allows exploring multitudes of 

scenarios allowing for example for the use of dynamic rupture simulations for Bayesian inversions (e.g., 

Gallovic et al., 2019). To understand error propagation and to develop probability densities for the 

parameters related to fundamental earthquake physics as well as physics-based monitoring and 

megathrust hazard assessment of the future, incorporating uncertainties is the critical next step. 

 

THE BOUNDARY INTEGRAL APPROACHES 

 

Integral Equation Methods (BEM & IBEM) 

 

Within the linear elasticity, the Somigliana’s representation theorem relates the displacement field with 

a boundary integral of both displacements and tractions combined with the Green’s function and the 

associated tractions. 
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Two main formulations have been proposed. The so-called direct boundary element method 

(DBEM) stems directly from Somigliana’s theorem and is based on reciprocity. Much of the 

terminology is related with the finite-element method (FEM). The other approach is the indirect 

boundary element method (IBEM). It is a consequence of the linearity of problem as the field is simply 

composed by the superposition of distributed loads which are intermediate unknowns. It can be seen as 

the mathematical transcription of Huygens’ principle. 

Although the description of the boundary methods can be made both in time and frequency, the 

latter approach has been prevailed in seismology. The discretization of the boundaries, the application 

of boundary conditions and the use of Fourier transform leads to DBEM (Kawase, 1988) or IBEM 

(Sánchez-Sesma and Campillo, 1991; Sánchez-Sesma and Luzón, 1995) numerical approaches. 

A complete review on the use of BEM for seismic problems can be found in Bouchon & Sánchez-

Sesma (2007). Perton et al. (2016) presented an implementation of the IBEM that allows to simulate 

elastic wave propagation in complex configurations made of embedded regions that are homogeneous 

with irregular boundaries or with flat layers.  

Despite the elegance of these boundary formulations, they are limited because the Green’s function 

is only available for homogeneous or for constant gradient media. Thus, the modelling of the realistic 

settings and rheologies is beyond its capacities. However, the versatility and the intrinsic economy of 

boundary formulations make them attractive to test and validate the volume approaches discussed herein. 

 

CONCLUSIONS 

 

The recent methodological advances in numerical modelling of seismic wave propagation are 

remarkable. As desired and expected, they make it possible to study the Earth’s structure and processes 

with the unprecedented accuracy. 

On the other hand, they, together with ongoing efforts, clearly indicate that there is a vast space for 

necessary improvements. Sufficiently realistic complexity of models of the Earth’s interior and 

seismological processes, optional level of accuracy and feasible computational efficiency for 

desirable/necessary space, time and frequency domains make together still ambitious and challenging 

task for developers of the methods and a dream for those who need numerical modelling to investigate 

Earth’s structure and processes. 

A dream numerical modelling code should allow for a geometrically complex model potentially 

made of blocks/layers of different rheologies as well as for a realistic wavefield generation. These 

aspects of the wavefield-model configuration should not be compromised by insufficient accuracy and 

insufficient computational efficiency. Such codes may be specific for small-scale and regional Earth’s 

model. 

It is very obvious that such numerical-modelling codes are still to be developed. There are many 

unsolved partial aspects in each of the recent numerical methods. It is important to continue developing 

each of the recent significant methods. This is because it is very likely that a truly universal (that is, 

suitable for all seismological problems) dream method will not be developed – at least not in the close 

future. 
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