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Simulation of the Planar Free Surface with Near-Surface Lateral

Discontinuities in the Finite-Difference Modeling of Seismic Motion

by Peter Moczo, Jozef Kristek, and Martin Gális

Abstract Kristek et al. (2002) developed a technique for simulating the planar
free surface in the 3D fourth-order staggered-grid finite-difference (FD) modeling of
seismic motion. The technique is based on (1) explicit application of zero values of
the stress-tensor components at the free surface and (2) adjusted FD approximations
(AFDAs) to vertical derivatives at and near the free surface. The technique was shown
to be more accurate and efficient than the standard stress-imaging technique in 1D
models.

In this study, we tested accuracy of the AFDA technique in media with lateral
material discontinuities reaching the free surface. We compared the FD synthetics
with synthetics calculated by the standard finite-element (FE) method because the FE
method naturally and sufficiently accurately satisfies the boundary conditions at the
free surface and the traction interface continuity conditions at internal material dis-
continuities. The comparison showed a very good level of accuracy of the AFDA
technique. We also demonstrated the very good sensitivity of our FD modeling to
different positions of the same physical model in the spatial FD grid.

Introduction

The Earth’s free surface, which in most seismological
applications may be approximated by a surface with zero
traction, strongly influences seismic motion. The finite-
difference (FD) method has an inherent difficulty in imple-
menting traction boundary conditions. Therefore, simulation
of the traction-free condition is one of the key factors for
the accuracy and efficiency of the FD modeling of seismic
motion.

Here, we consider only simulation of the planar free
surface in the staggered-grid FD schemes. In a Cartesian co-
ordinate system (x1, x2, x3), with the x1 axis horizontal and
positive to the right and the x3 axis positive downward, con-
sider a perfectly elastic isotropic half-space for x3 � 0 with
a planar free surface at x3 � 0. Let q(xi); i � {1,2,3} be
density, j(xi) bulk modulus, l(xi) shear modulus, (xi, t)ru
displacement vector, t time, (xi, t) body force per unit vol-rf
ume, and sij(xk, t) and eij(xk,t); i,j,k � {1,2,3} stress and strain
tensors. (Further, x1, x2, x3 and x,y,z will be used interchange-
ably; similarly, 1, 2, 3 and x,y,z in the subscripts of the stress-
tensor components and u1, u2, u3 and u,v,w in referring to
the displacement components.) The equation of motion and
Hooke’s law can be written as (summation convention for
repeated subscripts assumed)

q ü � s � f (1)i ij’j i

and

1
s � j e d � 2l e � e d , (2)ij kk ij ij kk ij� �3

where üi � �2ui/�t2 and sij’j � �sij/�xj. The traction vector
Ti( , ) � sjinj is equal to zero at the free surface at z �r ru n
0 with a unit normal vector (0,0,�1). Therefore,rn

s � 0, g � {x,y,z} (3)zg

is the boundary condition at the free surface.
Equations (1) and (2) can be solved by an FD method.

In the fourth-order staggered-grid FD schemes for interior
grid points, the first spatial derivative of some function u(n)
at n � n0 is approximated by

1 3 3
u, (n ) � a u n � h � u n � hn 0 0 0� � � � � ��h 2 2

1 1
� b u n � h � u n � h , (4)0 0� � � � ���2 2

with a � �1/24, b � 9/8, and h being a grid spacing. An
FD grid cell is shown in Figure 1. U and Txy represent FD
approximations to u (or, possibly, �u/�t) and sxy, and so on.

One natural option for localizing the planar free surface
is the horizontal grid plane going through positions of the
horizontal displacement components U, V, and stress-tensor
components Txx, Tyy, Tzz, and Txy; for brevity, we will call it
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Figure 1. A staggered-grid FD cell with positions
of the wave-field variables (displacement and/or
particle-velocity components and stress-tensor com-
ponents) and material parameters (elastic bulk and
shear moduli).

the “H formulation.” In the second option, the free surface
coincides with the horizontal grid plane going through po-
sitions of W, Tzx, and Tzy (W formulation).

It is clear from equations (1) and (2) and FD approxi-
mation (4) that if the displacement/particle-velocity and
stress-tensor components at the free surface and depths h/2
and h are to be calculated according to the FD scheme for
interior grid points, values of displacement/particle-velocity
and stress-tensor components at heights �h/2, �h, and
�3h/2 (that is, above the free surface) are required.

The technique suggested originally by Levander (1988)
for the 2D P-SV fourth-order velocity-stress FD scheme can
be called the “stress-imaging technique.” The technique ap-
plies explicit boundary conditions to the stress-tensor com-
ponents located at the free surface and uses imaged values
for the stress-tensor components above the free surface as-
suming their antisymmetry about the free surface. The an-
tisymmetry,

s (�z) � �s (z); g � {x,y,z}, (5)zg zg

ensures condition (3). Rodrigues (1993) developed a 3D
eighth-order staggered-grid displacement-stress scheme and
used the stress-imaging technique in the H formulation. He
found that it is necessary to take 10–15 grid points per short-

est wavelength to avoid a significant numerical dispersion.
Therefore, he combined the stress-imaging technique with a
vertically refined grid near the free surface and achieved
good accuracy. Graves (1996) applied the stress-imaging
technique in the H formulation in the 3D fourth-order
velocity-stress modeling. He found the technique better than
the vacuum-formulation approach, which applies the interior
FD scheme to the free-surface grid points assuming zero den-
sity and elastic moduli above the free surface.

Gottschämmer and Olsen (2001) tested the accuracy of
the H and W formulations in the 3D fourth-order staggered-
grid velocity-stress modeling in a homogeneous half-space
against the discrete-wavenumber (DWN) method. Applying
“a Gaussian-shaped function corresponding to approxi-
mately 6 points per shear wavelength” (p. 619), they showed
cases when one formulation is better than the other and vice
versa. In conclusion, Gottschämmer and Olsen recom-
mended the use of the W formulation and averaging across
the free surface in order to obtain values of the horizontal
components of the particle velocity at the free surface.

Kristek et al. (2002) performed detailed numerical ac-
curacy tests of the H and W formulations of Levander’s
(1988) stress-imaging technique in the 3D fourth-order
staggered-grid FD modeling. They showed that both for-
mulations require at least 10 grid spacings per minimum
wavelength (kmin/h � 10) if Rayleigh waves are to be prop-
agated without significant grid dispersion in the range of
epicentral distances up to 22kmin. Because interior fourth-
order staggered-grid schemes usually do not require sam-
pling denser than kmin/h � 6 in the considered range of
epicentral distances (Moczo et al., 2000, 2002), an alterna-
tive technique (allowing kmin/h � 6) was desirable.

Kristek et al. (2002) developed a technique based on the
adjusted FD approximations (AFDAs) and, applying the kmin/
h � 6 spatial sampling, demonstrated its accuracy and ef-
ficiency by comparing it numerically with the DWN method.
They also compared the AFDA technique to the combination
of the W-formulation stress imaging with Rodrigues’s
(1993) vertically refined grid near the free surface. The nu-
merical tests were performed for models of the homoge-
neous half-space and layer over half-space. The purpose of
this article is to test the accuracy of the AFDA technique in
models with lateral material discontinuities.

AFDA Technique

The principle of the technique (Kristek et al., 2002) is
simple. The technique uses the adjusted FD schemes to cal-
culate displacement/particle-velocity and stress-tensor com-
ponents at the free surface and depths h/2 and h. No virtual
displacement/particle-velocity and stress-tensor values
above the free surface are used, that is, no stress imaging is
applied. The technique applies (1) directly prescribed zero
values of szz at the free surface in the H formulation or szx

and szy in the W formulation and (2) AFDAs to the z deriv-
atives at the grid points at the free surface and depths h/2
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Figure 2. A part of the FD grid and position of the
free surface in the H formulation (left) and W for-
mulation (right) of the AFDA technique. The z deriv-
atives at the grid points at the free surface and depths
h/2 and h are calculated using adjusted FD approxi-
mations (given in the Appendix).

and h. The H-AFDA and W-AFDA are illustrated in Figure
2. Kristek et al. (2002) showed that while H-AFDA gives
slightly better phases, W-AFDA gives better amplitudes.
They concluded with the recommendation to use W-AFDA
for the earthquake ground-motion modeling. The calculation
of the stress-tensor and displacement components in W-
AFDA is briefly summarized in the Appendix.

Effective Material Parameters at the Free Surface

Moczo et al. (2002) developed a heterogeneous 3D
fourth-order staggered-grid FD scheme with volume har-
monic averaging of the bulk and shear moduli and volume
arithmetic averaging of density, and they demonstrated a
very good level of accuracy of the scheme. The scheme en-
ables an arbitrary position of the discontinuity in the spatial
grid and thus accounts for a difference in a layer thickness
smaller than the spatial grid spacing. Moczo et al. (2002)
demonstrated that such a thickness variation can yield con-
siderably different seismic motion. While the structure of
the scheme is the same as that of standard fourth-order
staggered-grid FD schemes, the difference is in the definition
of the grid material parameters. With reference to Figure 1,
volume arithmetic average of density and volume harmonic
averages of elastic moduli are evaluated as

x y zI�1 K�1 L�1/2

1A A 1 1q � q � q dx dy dz , (6)W I� ,K� ,L 3 � � �
2 2 h

x y zI K L�1/2

x y zI�1/2 K�1 L�1/2
�1

11H H 1l � l � dx dy dz , (7)zx I, K� ,L 3� � � � �
2 h l

x y zI�1/2 K L�1/2

x y zI�1 K�1/2 L�1/2
�1

11H H 1l � l � dx dy dz , (8)yz I� ,K,L 3� � � � �
2 h l

x y zI K�1/2 L�1/2

and so on.
In the W formulation, displacement component W and

stress-tensor components szx and syz are located at the free
surface. Therefore, in the W-AFDA technique we evaluate
corresponding grid material parameters , , and asA H Hq l lW zx yz

integral averages in the half grid-cell volumes (that is, we
do not account for the upper half of the volume, which is
located above the free surface):

x y zI�1 K�1 1/2

2A A 1 1q � q � q dx dy dz , (9)W I� ,K� ,0 3 � � �
2 2 h

x y zI K 0

x y zI�1/2 K�1 1/2
�1

12H H 1l � l � dx dy dz , (10)zx I,K� ,0 3� � � � �
2 h l

x y zI�1/2 K 0

x y zI�1 K�1/2 1/2
�1

12H H 1l � l � dx dy dz . (11)yz I� ,K,0 3� � � � �
2 h l

x y zI K�1/2 0

Test Examples

Numerical tests of the technique against the DWN
method for the homogeneous half-space and single layer
over half-space have been presented in papers by Kristek et
al. (2002) and Moczo et al. (2002). Because local surface
geologic conditions, which strongly affect the earthquake
ground motion, often include distinct lateral material dis-
continuities that reach the free surface, it is important to test
the AFDA technique against an independent method that is
capable of accounting for such a medium heterogeneity with
sufficient accuracy. We considered models with vertical and
oblique material discontinuities reaching the planar free sur-
face and calculated synthetic seismograms by the FD method
with the AFDA technique (Kristek et al., 2002; Moczo et al.,
2002) and standard finite-element (FE) method. We chose
the FE method to test our FD modeling because boundary
conditions at the free surface and at internal material dis-
continuities are naturally and well satisfied in the FE method.
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Figure 3. Vertical xz cross sections of models A and B and mechanical parameters
of the models. Model A: a soft rectangular inclusion; model B: a soft parallelogram-
shaped inclusion. The inclusions are infinitely long in the direction of the y axis per-
pendicular to the plane of the vertical cross section. The arrows (left) show positions
of the vertical body forces acting as point sources. �, P-wave velocity; b, S-wave
velocity; q, density.

Figure 3 shows two models, A and B, of soft rectangular
and parallelogram-shaped inclusions embedded in harder
basements. Both inclusions are infinitely long in the direc-
tion of the y axis (perpendicular to the plane of the vertical
cross section shown in the figure). Relatively deep inclusions
were chosen in order to enhance the role of the contact of
the inclusion–basement interface with the free surface in
forming the surface motion. In order to test the capability of
our FD modeling to account for different positions of the
same physical inclusion in the spatial grid, we performed
four different FD calculations for the same physical inclusion
and the same physical problem, that is, four FD calculations
for model A and four FD calculations for model B. Figure 4
indicates four different positions (a, b, c, and d) of the model
A and model B inclusions in the spatial grids. Because the
physical source–inclusion distance (in the x axis direction)
is the same in all four configurations, the grid spacings in
the four grids are slightly different (100.000, 102.128,
104.348, and 106.667 m in grids a, b, c, and d, respectively).

The source was a vertical body force acting at one point
(grid position of the w component of displacement) at the
free surface. Its source time function was a Gabor signal,
s(t) � exp{�[x(t � ts)/c]

2}cos[x(t � ts) � h]; x � 2pf p,
t � �0,2ts�, with predominant frequency f p � 0.225 Hz,
c � 1.5, phase shift h � 1.5708, and ts � 4.0 sec.

Before we compare FD synthetics against the FE syn-
thetics at selected receiver positions, we can look at the FD
synthetics calculated for configuration a of both models A
and B. Figure 5 shows three components of displacement at
44 receiver positions at the free surface along a profile par-
allel to the x axis. If the grid coordinates of the source are
(Is,Ks,0), then the leftmost receiver in the profile (numbered
1) has grid coordinates (Is � 6, Ks � 36,0). The grid co-
ordinates of the rightmost receiver in the profile are (Is �

49, Ks � 36,0). The distance between two neighboring re-
ceivers is equal to one grid spacing, which is 100 m in con-
figuration a. It is clear from Figure 5 that the two geometries
of the soft inclusions produce considerably different mo-
tions, especially within the inclusions. The difference be-
tween the motions justifies the use of the two models and
chosen frequency range (up to 1 Hz) for testing the sensitiv-
ity of the FD modeling to variation in the geometry of lateral
discontinuities reaching the free surface.

For comparison between the FD and FE synthetics, we
selected three receivers along the profile: looking in the posi-
tive x-axis direction, one receiver is in front of the inclusion
(labeled 1), one is within the inclusion (2), and one is behind
the inclusion (3). Grid coordinates, the same in all four grids,
are (Is � 6, Ks � 36,0), (Is � 15, Ks � 36,0), and (Is �
24, Ks � 36,0) for receivers 1, 2, and 3, respectively. Be-
cause the sizes of the grid spacings in the four grids are
slightly different, these grid coordinates mean slightly dif-
ferent physical positions of each of the three receivers in the
each of the a, b, c, and d calculations. The actual receiver
coordinates are given in Table 1. The time step used in all
eight FD calculations was 0.014 sec.

For comparison, we performed one (much more
computer-time- and memory-consuming) FE calculation for
model A and one FE calculation for model B. A standard
second-order accurate displacement formulation of the FE
method was used to calculate the FE synthetics. The FE mesh
inside the inclusion in model A was made of cubes with an
edge size of 50 m. Rectangular parallelepipeds were used
outside the inclusion. The FE mesh for model B was made
of parallelepipeds such that the geometry of the inclusion
was strictly followed. The parallelepipeds were obtained by
deformation of the elements used in model A. The time step
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Figure 4. Left: Positions of the soft rectangular inclusion (model A) in the spatial
grids in four (a, b, c, and d) FD calculations for the same inclusion, indicated in one
vertical grid plane. The meaning of the symbols is the same as in Figures 1 and 2. Grid
spacings in grids a, b, c, and d are 100, 102.128, 104.348, and 106.667 m, respectively.
Slightly different grid spacings are used in order to have different positions of the same
physical inclusion with respect to the spatial grid and, at the same time, to have phys-
ically the same source–inclusion configuration in all four calculations. Right: The same,
but for model B.

used in both FE calculations was the same as in all FD cal-
culations.

The FE displacement values at exact positions of the FD
receivers were calculated from displacement values at FE
nodes simply using the element shape functions.

The FD and FE synthetics for the three selected receiver
positions are shown in Figure 6. Given the fact that both
methods are just approximate and that the models are
strongly laterally heterogeneous, the overall agreement be-
tween the FE and FD synthetics is very good. The largest
difference can be seen on the w component of receiver 2 in
grid configuration d for model A. A possible explanation for
this particular difference might be the fact that the physical
interface is too close but not exactly on the vertical grid
plane. The synthetics for configurations a, b, c, and d also

show that the FD scheme is capable to see the same physical
model regardless of its position in the spatial FD grid.

We also compared the FD and FE synthetics for other
profiles going through the inclusions. We did not see a dif-
ference between the FD and FE synthetics larger than that
mentioned earlier. In fact, the differences were all smaller.

We think that our numerical tests show that our FD mod-
eling, and particularly the AFDA technique for simulating
the planar free surface, is sufficiently accurate and thus ap-
plicable to models with near-surface lateral discontinuities.

Conclusions

We numerically tested the accuracy of the AFDA tech-
nique in models with lateral material discontinuities reaching
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Figure 5. FD synthetics for receiver positions along a profile parallel to the x axis
(perpendicular to the inclusion). The grid coordinates of the receivers in the y- and z-
axis directions are KS � 36 and 0, respectively, where KS is the grid coordinate of the
source. “a” denotes one of the four model-grid configurations. U, V, and W are Car-
tesian components of the displacement vector. Diamonds with numbers indicate se-
lected receiver positions for which FD synthetics are compared with the FE synthetics
(Fig. 6).

the free surface. For each of two physical models of soft
inclusions embedded in the half-space, we considered four
different positions of the inclusion in the spatial grid. We
compared our FD synthetics with synthetics calculated by
the standard FE method. The FE method was used because,
unlike the FD method, it naturally and sufficiently accurately
satisfies boundary conditions at the free surface and at in-
ternal material discontinuities. The comparison showed (1)
the good accuracy of the AFDA technique in simulating the
planar free surface and (2) the good sensitivity of our FD
modeling to different positions of the same physical model
in the spatial FD grid.

The implication of our study is that the AFDA technique
can be used for simulating the planar free surface in models
with lateral material discontinuities, which is the case for
realistic models of surface sedimentary structures.
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Appendix

Summary of the Treatment of the Stress-Tensor and
Displacement Components in the W-AFDA Technique

Tzx(0) � 0, Tzy(0) � 0.
Txx(h/2) is obtained from the fourth-order FD approxi-

mation to Hooke’s law for sxx; derivative w’z is approximated
by formula (A2).

Tyy(h/2) and Tzz(h/2): similar to Txx(h/2).
Tzx(h) is obtained from the fourth-order FD approxi-

mation to Hooke’s law for szx; derivative u’z is approximated
by formula (A3), in which u’z(0) is replaced by w’x due to
condition szx(0) � 0.

Tzy(h) is obtained from the fourth-order FD approxi-
mation to Hooke’s law for szy; derivative v’z is approximated
by formula (A3), in which v’z(0) is replaced by w’y due to
condition szy(0) � 0.

W(0) is obtained from the fourth-order FD approxima-
tion to the equation of motion for w; derivative szz’z is ap-
proximated by formula (A1), in which condition szz(0) � 0
is used.

U(h/2) is obtained from the fourth-order FD approxi-
mation to the equation of motion for u; derivative szx’z is
approximated by formula (A2).

V(h/2) is obtained from the fourth-order FD approxi-
mation to the equation of motion for v; derivative szy’z is
approximated by formula (A2).

W(h) is obtained from the fourth-order FD approxima-
tion to the equation of motion for w; derivative szz’z is ap-
proximated by formula (A4), in which condition szz(0) � 0
is used.

1 352 35 h 35 3
u�(z ) � � u(z ) � u z � � u z � h0 0 0 0� � � � �h 105 8 2 24 2

21 5 5 7 4� u z � h � u z � h � O(h )0 0� � � ��40 2 56 2

(A1)

1 11 h 17 h 3 3
u�(z ) � � u z � � u z � � u z � h0 0 0 0� � � � � � �h 12 2 24 2 8 2

5 5 1 7 4� u z � h � u z � h � O(h )0 0� � � ��24 2 24 2

(A2)

1 h 577 h 201 h
u�(z ) � � u�(z � h) � u z � � u z �0 0 0 0� � � � �h 22 528 2 176 2

9 3 1 5 4� u z � h � u z � h � O(h )0 0� � � ��176 2 528 2

(A3)

1 16 31 h 29 h
u�(z ) � u(z � h) � u z � � u z �0 0 0 0� � � � �h 105 24 2 24 2

3 3 1 5 4� u z � h � u z � h � O(h )0 0� � � ��40 2 168 2

(A4)
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Figure 6. Comparison of the FD and FE synthetics for selected surface receiver
positions along the profile parallel to the x axis. Looking in the positive x-axis direction,
receiver 1 is in front of the inclusion, receiver 2 is approximately in the center of the
inclusion, and receiver 3 is behind the inclusion. A and B refer to the models (Fig. 3);
lowercase a, b, c, and d refer to four different model-grid configurations (Fig. 4). U,
V, and W are Cartesian components of the displacement vector. FD � solid line,
FE � dashed line.
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