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3D Fourth-Order Staggered-Grid Finite-Difference Schemes:

Stability and Grid Dispersion

by Peter Moczo, Jozef Kristek, and Ladislav Halada

Abstract We investigated stability and grid dispersion in the 3D fourth-order in
space, second-order in time, displacement-stress staggered-grid finite-difference
scheme. Though only displacement-stress scheme is explicitly treated, all results
also apply to the velocity-stress and displacement-velocity-stress finite-difference
schemes.

We derived independent stability conditions for the P and S waves by exact sep-
aration of equations for the two types of waves.

Since the S-wave group velocity can differ from the actual velocity as much as
5% for the sampling ratio 1/5 (that is usually used in modeling), we recommend to
sample a minimum S wavelength by six grid spacings.

Grid dispersion is strongest for a wave propagating in the direction of a coordinate
axis and weakest for a wave propagating along a body diagonal.

Grid dispersion in the fourth-order scheme for the sampling ratios s � 1/5 and
s � 1/6 is smaller than grid dispersion in the second-order scheme for s � 1/10 and
s � 1/12, respectively.

Introduction

The staggered-grid finite-difference (FD) schemes be-
came a very popular numerical tool for modeling seismic-
wave propagation and earthquake ground motion after
Virieux (1984, 1986) had presented his SH and P-SV second-
order velocity-stress FD schemes. Levander (1988) applied
the fourth-order approximation in space to the P-SV scheme.
Luo and Schuster (1990) introduced the P-SV displacement-
stress scheme and Olsen and Schuster (1992) extended it to
the 3D case. Yomogida and Etgen (1993) used an approxi-
mate eighth-order displacement-stress scheme for the 3D
modeling. Graves (1996) presented a 3D fourth-order veloc-
ity-stress scheme with effective material parameters. Ohmi-
nato and Chouet (1997) suggested a technique to include the
free-surface topography in the 3D second-order displace-
ment-stress modeling. Another technique to include the free-
surface topography in the 3D velocity-stress modeling was
suggested by Hestholm and Ruud (1998). Pitarka (1999)
presented a 3D approximately fourth-order velocity-stress
scheme on a rectangular grid with a varying size of a grid
spacing. Aoi and Fujiwara (1999) applied a 3D second-order
velocity-stress scheme on a discontinuous h � h � h_3h
� 3h � 3h grid.

The staggered-grid FD schemes have been recently
widely used for the 3D modeling of the earthquake ground
motion, e.g., Graves (1993), Olsen et al. (1995), Pitarka et
al. (1997, 1998), Cotton et al. (1998), Graves et al. (1998),

Matsushima et al. (1998), Wald and Graves (1998), and
Kristek et al. (1999). The staggered-grid schemes have also
been applied to seismic source and wave propagation mod-
eling. However, as far as we know, stability and grid dis-
persion of the 3D staggered-grid schemes have not been suf-
ficiently investigated. Dispersion curves were presented by
Virieux (1986) and Levander (1988) for their velocity-stress
2D P-SV schemes. Crase et al. (1992) derived stability con-
dition for the P-SV case of an arbitrary order of approxi-
mation using a decomposition of the matrix scheme and a
Fourier transform.

Therefore, we focus in this article on the stability con-
dition and grid dispersion in the 3D fourth-order in space,
second-order in time, displacement-stress FD scheme. We
present an exact derivation of the stability conditions for the
P and S waves by strict separation of equations for the two
types of waves. We obtain the grid-dispersion relations for
both waves and use them for numerical investigation of
the grid dispersion in space, coordinate-axis plane, body-
diagonal plane, and three distinct directions of propagation.
We also compare grid dispersion in the 3D fourth- and
second-order schemes as well as the 3D and 2D P-SV
schemes.

Though we explicitly treat the displacement-stress
scheme, all results also apply to the velocity-stress and dis-
placement-velocity-stress (Moczo et al., in press) schemes.
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Figure 1. The Cartesian coordinate system and an-
gles d and u that determine a direction of propagation.
Three distinct directions of propagation investigated
in the study: along a coordinate axis, coordinate-plane
diagonal, and body diagonal.

Equation of Motion and the 3D Fourth-Order
Displacement-Stress Finite-Difference Scheme

Consider Cartesian coordinate system (x, y, z). Let den-
sity q and Lamé elastic coefficients k and l be functions of
spatial coordinates x, y, z. Let displacement vector ū(u, v,
w), stress tensor sej; e, j � {x, y, z}, and body force per
unit volume f (f x, f y, f z) be functions of x, y, z and time t.
The equation of motion and Hooke’s law for a perfectly
elastic, inhomogeneous, isotropic medium are

qu � s � s � s � ftt xx,x xy,y xz,z x

qm � s � s � s � f (1a)tt xy,x yy,y yz,z y

qw � s � s � s � ftt xz,x yz,y zz, z z

and

s � (k � 2l)u � km � kwxx x y z

s � ku � (k � 2l)m � kwyy x y z

s � ku � km � (k � 2l)w (1b)zz x y z

s � l(u � m )xy y x

s � l(u � w )xz z x

s � l(m � w )yz z y

where utt � �2u/�t2, sxx,x � �sxx/�x, ux � �u/�x and so on.
We can call equations (1) the displacement-stress formula-
tion of the equation of motion.

Consider a 3D regular rectangular staggered spatial grid
with a grid spacing h. Denote Dt a time step and a � �

1�
24

and b � coefficients of the fourth-order approximation of9�
8

the first derivative. Let be a discrete approximation tomUI,K,L

where I, K, L are spatial indicesmu � u(x , y , z , t )I,K,L I K L m

and m is a time index. Similarly, let V, W, Txx, Tyy, Tzz,
Txy,Txz, Tyz, Fx, Fy, and Fz be discrete approximations to v,
w, sxx, syy, szz, sxy, sxz, syz, f x, f y, and f z. For equations (1)
we can construct an explicit fourth-order in space, second-
order in time, displacement-stress staggered-grid FD scheme.
The scheme is given in the Appendix.

Stability Condition for an Unbounded
Homogenous Medium

To analyze stability of the FD scheme we use the von
Neumann (1943) method that assumes harmonic decompo-
sition of the errors at a given time. Assume errors in U, V,
W, Txx, Tyy, Tzz,Txy, Txz, and Tyz at x � Ih, y � Kh, z �
Lh, and t � mDt in the form

e(U) � AE, e(V) � BE, e(W) � CE

xx yy zze(T ) � D E, e(T ) � D E, e(T ) � D E (2)1 2 3

xy xz yze(T ) � D E, e(T ) � D E, e(T ) � D E4 5 6

E � exp i(�xm Dt � k Ih � k Kh � k Lh)x y z

where x is an angular frequency, kx, ky, and kz are the com-
ponents of the wavenumber vector k,

k � k cos u sin d, k � k sin u sin d,x y (3)
¯k � k cos d, k � |k|z

and angles d and � (illustrated in Fig. 1) are from intervals

0 � d � p 0 � u � 2p.

Investigate propagation of the errors (2) in the grid. Inserting
(2) into the FD scheme (see appendix) leads to the system
of equations

2 2 2 2 2A n X � b R n XY n XZ A
2 2 2 2 2B c � n XY n Y � b R n YZ B
2 2 2 2 2� � � �� �C n XZ n YZ n Z � b R C

(4)

where

2S Dt1
�c � , S � sin xDt, D �2 2D h

k � l l2 2n � , b �
q q

b being the S-wave velocity,
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3 1
� �X � a sin k h � b sin k hx x2 2

3 1
� �Y � a sin k h � b sin k h (5)y y2 2

3 1
� �Z � a sin k h � b sin k hz z2 2

and

2 2 2R � X � Y � Z .

Denoting the matrix in equation (4) by M and rearranging
the equation we have

A 0
[M � c1] B � 0� � � �C 0

where 1 is a unit matrix. A nontrivial solution exists if

Det[M � c1] � 0. (6)

Rewrite the matrix:

X 1 1 1 X
2[M � c1] � n Y 1 1 1 Y � d1�� �� �� � �Z 1 1 1 Z

where

2b R �c
d � .2n

Then equation (6) can be rewritten as

X 1 1 1 X
6n Det Y 1 1 1 Y � d1 � 0�� �� �� � �Z 1 1 1 Z

and

2X � d XY XZ
2Det XY Y � d YZ � 0� 2 �XZ YZ Z � d

from which we obtain

2 2 2 2d (X � Y � Z � d) � 0. (7)

Equation (7) is satisfied if

2 2 2X � Y � Z � d � 0 (8)

or

d � 0. (9)

From equations (8) and (9) we obtain, respectively,

2 2 2 2 2 2S � D � (X � Y � Z )
2 2 2 2 2 2S � D b (X � Y � Z )

from which we finally have

Dt1 2 2 2 1/2�sin x Dt � � �(X � Y � Z ) (10)2 h

Dt1 2 2 2 1/2�sin x Dt � � b(X � Y � Z ) (11)2 h

where � is the P-wave velocity,

k � 2l2� �
q

and X, Y, Z are given by equations (5). Thus, we obtained
two independent equations: equation (10) for the P wave and
equation (11) for the S wave. Equation (10) implies a sta-
bility condition for the P wave:

6 h
Dt � (12)

�7 3�

Similarly, equation (11) implies a stability condition for the
S wave:

6 h
Dt �

b7 3�

If both types of waves are generated and propagate in a
medium, condition (12) for the P wave has to be taken as
the joint stability condition since � � b.

Later we will use a stability parameter p, which can be
defined as

7 3 Dt�
p � �, (13)

6 h

which means that

p � 1.

Grid Dispersion

Both equations (10) and (11) can be (omitting the minus
sign) rewritten in the form
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1 Dt 2 2 2 1/2x Dt � arcsin c(X � Y � Z ) (14)� �2 h

where c is either the P-wave velocity � or S-wave velocity
b for the P or S wave, respectively. Since x is the angular
frequency in the grid,

gridc
x � 2p (15)gridk

where cgrid and kgrid are the phase velocity and wavelength
in the grid, equation (14) represents grid-dispersion relations
for the P and S waves propagating in the grid.

Define a spatial sampling ratio s for the S wave at a
given frequency as

h
s � (16)gridkS

Similarly, we can define a spatial sampling ratio sP for the
P wave at a given frequency as

h
s � .P gridkP

However, if both types of waves are generated and propagate
in a medium we have to adopt one joint spatial sampling
ratio in order to compare the P- and S-wave dispersion.
Since, at a given frequency, the S wave has a shorter wave-
length, the spatial sampling ratio for the S wave has to be
taken as an argument in relations for both the P and S waves.
Obviously, a spatial sampling ratio sP for the P wave relates
to that for the S wave as

s
s � (17)P r

where r is a velocity ratio

�
r � . (18)

b

Dividing equation (14) for the P wave and S wave by � and
b, respectively, and inserting relations (3, 5, 15–18) we ob-
tain the normalized grid-dispersion relations for the P and S
waves in the form

grid 3�� r 1
� q arcsin p F (19)a� �� p p • s q 3�

grid 3�b r 1 p
� q arcsin F (20)b� �b p p • s rq 3�

where

7q �
6

2F � {[a sin (3py cos u sin d) � b sin (py cos u sin d)]g

2� [a sin (3py sin u sin d) � b sin (py sin u sin d)]

2 1/2� [a sin (3py cos d) � b sin (py cos d)] }

p, s, and r are given by equations (13), (16), and (18), and

s
y � if g � �

r

or

y � s if g � b.

Note that both the P- and S-wave grid dispersions depend
now on the velocity ratio (and thus on the Poisson’s

a
�r �
b

ratio r � (2 � r2)/[2(1 � r2)]). The dependence of the S-
wave dispersion on the velocity ratio r was introduced by
considering the P-wave stability condition (12) as a joint
condition for both the P and S waves. The dependence of
the P-wave dispersion on the velocity ratio r was introduced
by considering the spatial sampling ratio for the S wave,

, as a joint argument in the dispersion relationsgnids � h/ks

(19) and (20) for both types of waves.
Let us note that the grid-dispersion relations in the case

of the second-order scheme are obtained from relations (19)
and (20) by inserting a � 0, b � 1, and q � 1. A stability
parameter p in the second-order scheme is defined as

Dt
p � 3 �, p � 1.�

h

For completeness, the dispersion relations in the 2D P-SV
case are given in the appendix.

The existence of the grid dispersion of the phase veloc-
ity implies the existence of the grid group velocity

and its dispersion. We easily obtaingridc � �x/�kgroup

grid� 2( f C � f C � f C )group 1 1 2 2 3 3
�

2 1/2� 6
F � pF� � � �

7 3�
gridb 2( f C � f C � f C )group 1 1 2 2 3 3

�
2 1/2b 6 p

F � F� � � �r7 3�

where
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f � a sin (3py cos u sin d) � b sin (py cos u sin d)1

f � a sin (3py sin u sin d) � b sin (py sin u sin d)2

f � a sin (3py cos d) � b sin (py cos d)3

3
C � cos u sin d a cos (3py cos u sin d)1 � 2

1
� b cos (py cos u sin d)�2

3
C � sin u sin d a cos (3py sin u sin d)2 � 2

1
� b cos (py sin u sin d)�2

3
C � cos d a cos (3py cos d)3 � 2

1
� b cos (py cos d)�2

2 2 2F � f � f � f1 2 3

and

grid grids � bgroup group
y � in the case of or y � s in the case .

r � b

Grid Dispersion: Numerical Results

Propagation in Space

In order to investigate the grid dispersion in space, let
us define the following set of directions of propagation:

(u, d) � U � D � U � D (21)1 1 2 2

Here, � and d are angles shown in Figure 1 and

U � {0�}1

U � {0�, 5�, 10�, 15�, . . . , 40�, 45�}2

D � {45�, 50�, 54.74�, 55�, 60�, . . . , 85�, 90�}1

D � {5�, 10�, . . . , 45�, 50�, 54.74�, 55�, 60�, . . . , 80�, 85�}.2

Set (21) determines 173 directions of propagation in total.
We checked that this set is sufficient to show scatter of the
dispersion curves for different possible directions of propa-
gation in space. Figure 2(a) shows dispersion curves for the
P wave for three values of the Poisson’s ratio r and three
values of the stability parameter p. Analogously, Figure 3(a)
shows dispersion curves for the S wave. Two vertical lines
shown for each set of the curves indicate two values of the
spatial sampling ratio, s � 1/6 and s � 1/5, that are used
by seismologists in numerical simulations.

Obviously, it is desirable to run any computation in a
homogeneous medium at a stability limit (p � 1.0), i.e., with

the maximum possible value of the time step, since a smaller
value of the time step would increase a total computational
time. There is, however, a very important reason to show
dispersion also for p as low as 0.5 and 0.1 that mean one-
half and one-tenth of the maximum time step, respectively.
One usually simulates a wave propagation in a model con-
sisting of several homogeneous layers and/or blocks. In seis-
mic ground motion simulation it is usual to have model with
a (minimum P-wave velocity in sediments/maximum P-
wave velocity in bedrock) ratio of 2 and more, sometimes
even 10. Since the time step is determined according to a
medium with the largest velocity, it is 2 to 10 times smaller
than that required by the medium with the minimum veloc-
ity. Correspondingly, an effective stability ratio for a me-
dium with the minimum velocity is as low as 0.5 to 0.1.

As expected, due to a longer wavelength of the P wave
at the same frequency, propagation of the P wave is modeled
by the FD scheme much better than that of the S wave. Com-
pared to the P wave, there is relatively considerable grid-
dispersion anisotropy of the S wave.

For a given Poisson’s ratio r and direction of propa-
gation, both �grid/� and bgrid/b decrease with a decreasing
value of the stability parameter p. Sensitivity of bgrid/b to
the stability parameter p decreases with an increasing value
of the Poisson’s ratio r. For a given direction of propagation
and stability parameter p, bgrid/b decreases with an increas-
ing Poisson’s ratio r.

For a given direction of propagation, the S-wave dis-
persion curves for all values of the Poisson’s ratio r are very
close to each other in the case of the stability parameter
p � 0.1. This is understandable if we examine a limit of
bgrid/b for p → 0. According to relation (20)

r pgridb /b � w arcsin v� �p r

where the meaning of w � w(s) and v � v(s,d,�) is clear
from relation (20). It is easy to find that

gridlim (b /b) � w •v.
p→0

This explains why the dispersion curves (for a given direc-
tion of propagation) for p as low as 0.1 are so close to each
other regardless of the value of the Poisson’s ratio r.

Majority of the displayed S-wave dispersion curves ex-
hibit bgrid/b � 1. Thus, in majority cases, the grid dispersion
causes delays of the S-wave arrivals. There are, however,
some curves that exhibit bgrid/b � 1 at certain intervals of
the sampling ratio s.

Table 1 shows minimum bgrid in percentage of b for two
values of the sampling ratio s, s � 1/5 and s � 1/6, three
values of the Poisson’s ratio r and three values of the sta-
bility parameter p. It is clear from Table 1 that for s � 1/5
and s � 1/6, bgrid does not differ from the actual velocity b
more than, approximately, 1% and 0.5%, respectively. Con-
sider,
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Figure 2. (a) Grid-dispersion curves for the
P wave propagating in 173 directions in space.
The set of directions is sufficient to show scat-
ter of dispersion curves for all possible direc-
tions of propagation in space. Dispersion
curves are shown for three values of the Pois-
son’s ratio r and three values of the stability
parameter p. The three values of r, 0.25, 0.45,
and 0.495, correspond to �/b ratios of ,3�
3.317, and 10, respectively. Two vertical lines
indicate two values of the spatial sampling ra-
tio (s � h/kS), s � 1/6 and s � 1/5, that are
used by seismologists in numerical simula-
tions. The horizontal line �grid/� � 1 indicat-
ing the case of no grid dispersion is also shown
for convenience. (b) The same as in Figure 2(a)
but for the group velocity.
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Figure 3. (a) Grid-dispersion curves for the
S wave propagating in 173 directions in space.
Compare with Figure 2(a) for the P wave. (b)
The same as in Figure 3(a) but for the group
velocity.
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Table 1
Minimum Grid S-Wave Phase Velocities bgrid in % of the

Actual Velocity b

s � 1/5

r

p 0.25 0.45 0.495

1.0 99.463 99.078 98.951
0.5 99.066 98.971 98.940
0.1 98.941 98.937 98.936

s � 1/6

r

p 0.25 0.45 0.495

1.0 99.843 99.572 99.483
0.5 99.564 99.497 99.475
0.1 99.476 99.473 99.472

s, spatial sampling ratio; r, Poisson’s ratio; p, stability parameter.

Table 2
Minimum Grid S-Wave Group Velocities in % of thegridbgroup

Actual Velocity b

s � 1/5

r

p 0.25 0.45 0.495

1.0 96.410 95.288 94.922
0.5 95.253 94.979 94.888
0.1 94.892 94.881 94.878

s � 1/6

r

p 0.25 0.45 0.495

1.0 98.525 97.723 97.460
0.5 97.699 97.501 97.436
0.1 97.439 97.431 97.428

s, spatial sampling ratio; r, Poisson’s ratio; p, stability parameter.

for example, b � 300 m/sec and travel distance of 10,000
m that are reasonable values in large sedimentary basins or
valleys. Then, the delays in the S-wave arrival caused by the
grid dispersion are 0.337 sec and 0.168 sec for the sampling
ratio s � 1/5 and s � 1/6, respectively.

While there is practically no grid dispersion for the Pois-
son’s ratio r � 0.495 for the sampling ratios s � 0.4, �grid/
� � 1 at all directions of propagation for the stability pa-
rameter p � 1.0 and Poisson’s ratio r � 0.25. The latter
case means that the grid dispersion causes unphysically ear-
lier P-wave arrivals. If necessary, and given relatively low
sensitivity of bgrid/b to the stability parameter p, the earlier
arrivals can be prevented by taking p as low as 0.5, i.e., by
using half-value of the maximum possible time step Dt.

Figure 2(b) shows dispersion curves of the P-wave
group velocity for three values of the Poisson’s ratio r and
three values of the stability parameter p. Analogously, Fig-
ure 3(b) shows dispersion curves of the S-wave group ve-
locity. What was said about the phase-velocity grid disper-
sion with respect to the Poisson’s ratio r and stability
parameter p is qualitatively also true about the group-
velocity grid dispersion. An important difference is consid-
erably larger grid-dispersion anisotropy. Table 2 shows min-
imum in percentage of b for two values of thegridbgroup

sampling ratio s, s � 1/5 and s � 1/6, three values of the
Poisson’s ratio r and three values of the stability parameter
p. It is clear from Table 2 that for s � 1/5 and s � 1/6,

can differ from the actual velocity b as much as, ap-gridbgroup

proximately, 5% and 2.5%, respectively. Considering again
the example with b � 300 m/sec and travel distance of
10,000 m, the delays in the S-wave energy arrival caused by
the grid dispersion are 1.754 sec and 0.877 sec for the sam-
pling ratios s � 1/5 and s � 1/6, respectively.

It is clear that taking six grid spacings per minimum
wavelength of the S wave, i.e., s � 1/6, is better than taking
only five grid spacings.

Propagation in the Coordinate-Axis Plane

Figure 4 shows dispersion curves for the P and S waves
propagating in different directions in the coordinate xz-plane
for the Poisson’s ratio r � 0.25 and stability parameter
p � 1.0. From the two shown sets of the dispersion curves
and from analogous ones for other values of p and r (not
shown here) it follows that for given values of s, p, and r,
cgrid/c (where c is � or b) increases from the minimum at the
direction of the coordinate axis (here, the x-axis; d � 90�,
u � 0�) up to the maximum at the direction of the plane
diagonal (here, the xz-plane diagonal; d � 45�, u � 0�).

Propagation in the Body-Diagonal Plane

Figure 5 shows dispersion curves for the P and S waves
propagating in the body-diagonal plane (here, the vertical
plane determined by angle u � 45�) for the Poisson’s ratio
r � 0.25 and stability parameter p � 1.0. From Figure 5
as well as other sets of the dispersion curves (not shown
here) it follows that for given values of s, p, and r, cgrid/c
(where c is � or b) increases from the minimum at the di-
rection of the coordinate axis (here, the z-axis; d � 0�) up
to the maximum at the direction of the body diagonal (here,
the diagonal determined by d � 54.74� and u � 0�), and
then decreases down to the value at the direction of the
coordinate-plane diagonal (here, the xy-diagonal; d � 90�,
u � 45�).

Propagation in Three Distinct Directions

There are three distinct directions of propagation in the
considered regular rectangular spatial grid: along a coordi-
nate axis, coordinate-plane diagonal, and body diagonal.
Here we consider the x-axis (d � 90�, u � 0�), the xz-plane
diagonal (d � 45�, u � 0�), and body diagonal determined
by d � 54.74� and u � 45�. They are illustrated in Figure
1. Figure 6 shows dispersion curves for the P wave propa-
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Figure 4. Grid dispersion curves for the P and S waves propagating in different
directions in the coordinate xz-plane for the Poisson’s ratio r � 0.25 and stability
parameter p � 1.0.

gating in the three directions for three values of the Poisson’s
ratio r and four values of the stability parameter p. Analo-
gously, Figure 7 shows the dispersion curves for the S wave.

For given values of the spatial sampling ratio s, Pois-
son’s ratio r, and stability parameter p, cgrid/c (where c is �
or b) exhibit a maximum at the direction of the body diag-
onal and minimum at the direction of the coordinate axis. In
other words, grid dispersion is strongest for a wave propa-

gating along a coordinate axis and weakest for a wave prop-
agating along a body diagonal.

Another interesting feature is that while |bgrid � b| in-
creases for r → 0 in the direction of a coordinate axis, it
decreases in the direction of a body diagonal.

For a given type of wave, direction of propagation and
value of the Poisson’s ratio r, cgrid/c decreases with decreas-
ing value of the stability parameter p.

Figure 5. Grid dispersion curves for the P and S waves propagating in different
directions in the body-diagonal plane for the Poisson’s ratio r � 0.25 and stability
parameter p � 1.0.
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For a given type of wave and direction of propagation,
sensitivity of cgrid/c to the value of the stability parameter p
considerably decreases as the value of the Poisson’s ratio r
increases.

Since the grid dispersion is strongest in the direction of
a coordinate axis, let us illustrate its effect on a plane S wave
propagating in the direction of the x-axis (d � 90�, u �
0�). Consider a medium with b � 300 m/sec and � � 1000
m/sec, i.e., r � 0.4505. Let the time function of the wave
be Gabor signal

2s(t) � exp{�[x (t � t )/c ] } cos[x (t � t ) � h].p s s p s

Here, xp � 2pfp, t � �0, 2ts�, f p � 0.5 Hz is predominant
frequency, cs � 11 controls the width of the signal, h �
p/2 is a phase shift, and ts � 0.45 cs /f p. The predominant
frequency of 0.5 Hz is a typical one in recent seismic ground
motion modeling. The amplitude spectrum of the signal is
shown in Figure 8. The spectrum falls off by three orders of
magnitude from its maximum at the frequency of 0.74 Hz.

In Figure 9 we show two cases. In the first one, a spatial

Figure 6. Grid dispersion curves for the P wave propagating in the three distinct
directions: along a coordinate axis, coordinate-plane diagonal, and body diagonal. Here
we consider the x-axis (d � 90�, u � 0�), the xz-plane diagonal (d � 45�, u � 0�),
and body diagonal (d � 54.74�, u � 45�). The dispersion curves are shown for three
values of the Poisson’s ratio r and four values of the stability parameter p.
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sampling criterion is applied to a wavelength k0.5 Hz at the
predominant frequency. Two numerical solutions, one for
six and one for five grid spacings per k0.5 Hz are shown to-
gether with the exact solution (upper panel in Fig. 9). An
effect of the grid phase-velocity dispersion is shown on the
left-hand side (signals) while an effect of the grid group-
velocity dispersion is shown on the right-hand side of the
figure (envelopes). First, compare the numerical solution for
five grid spacings per k0.5 Hz with the exact one. Both the
signal and envelope of the numerical solution are distorted
and delayed with respect to the exact solution. The delays
of the maximum amplitudes of the signal and envelope are
approximately 10% larger than delays simply predicted from
the corresponding values of the grid phase and group veloc-

ities for a given travel distance. This is due to the effect of
the spectral content of the Gabor signal at frequencies higher
than the predominant frequency (see Fig. 8).

Compare now the two solutions with the numerical one
for six grid spacings per k0.5 Hz. We can see in Figure 9 that
the delays of the maximum amplitudes of the signal and
envelope (with respect to the exact solution) are approxi-
mately twice smaller compared with those for five grid spac-
ings per k0.5 Hz.

The lower part of Figure 9 compares the exact solution
with two numerical ones for five and six grid spacings ap-
plied to k0.74 Hz. As expected, delays due to the grid disper-
sion are much smaller compared with those in the earlier
case.

Figure 7. The same as in Figure 6 but for the S wave.
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An important fact in both cases is that using six grid
spacings per wavelength instead of five grid spacings de-
creases delays in phase and energy arrivals approximately
twice.

The example also indicates that it is not enough to apply
a spatial sampling criterion to a wavelength corresponding
to a predominant frequency if the spectral content at higher
frequencies of a signal is non-negligible.

Comparison with the Second-Order Scheme

In order to compare grid dispersion in the fourth- and
second-order schemes, we show in Figure 10 the P- and S-
wave dispersion curves for both orders of approximation.
Dispersion for the three distinct directions of propagation is

illustrated. It is very clear from Figure 10 that the difference
between the two orders of approximation is significant. The
second-order scheme models both the P- and S-wave prop-
agation much worse than the fourth-order scheme.

There is one interesting exception in the second-order
scheme. It is easy to see from equation (19) that for d �
54.74� and u � 45� (body diagonal) and p � 1.0, �grid/�
� 1 for all values of the spatial sampling ratio s, i.e., there
is no grid dispersion of the P wave propagating along the
body diagonal at the stability limit. This is illustrated by a
missing dispersion curve in the bottom left set of the curves
in Figure 10. (The dispersion curve coincides with the hor-
izontal line �grid/� � 1.)

Another interesting feature of the grid dispersion in the
second-order scheme is that cgrid/c�1 (where c is � or b),
i.e., there are no grid-dispersion related earlier arrivals.

Comparison with the 2D P-SV Case

Figure 11 illustrates the difference between the grid dis-
persion in the 3D and 2D P-SV cases. It follows from sys-
tematic investigation (figures not shown here) that sensitivity
of the P- and S-wave grid dispersion to the stability param-
eter p is in the P-SV case larger than that in the 3D case
regardless of the direction of propagation, value of the Pois-
son’s ratio, and order of approximation. In this sense, the
grid dispersion in the 2D P-SV case is worse than that in the
3D case.

Conclusions

We derived independent stability conditions for the P
and S waves by exact separation of equations for the two
types of waves.

Considering the P-wave stability condition as a joint
stability condition, and the spatial sampling of the S wave-
length at a given frequency as an argument in both disper-
sion relations, we consistently investigated the P- and S-
wave grid dispersion.

Due to larger wavelength of the P wave, propagation of
the P wave is modeled by the FD scheme much better than
that of the S wave. Compared to the P wave, there is rela-
tively considerable grid-dispersion anisotropy of the S-wave
phase and mainly group velocity. The phase velocity bgrid

does not differ not differ from the actual velocity b more
than, approximately, 1% and 0.5% for the spatial sampling
ratios s � 1/5 and s � 1/6, respectively. However, the group
velocity can differ from b as much as 5% for the spatialgridbgroup

sampling ratio s � 1/5 while it is 2.5% for s � 1/6. There-
fore, we recommend to sample a minimum S wavelength by
six grid spacings (instead of five that is prevailing practice).

Grid dispersion is strongest for a wave propagating
along a coordinate axis and weakest for a wave propagating
along a body diagonal.

From comparison with the grid dispersion in the second-
order FD scheme it follows that the fourth-order scheme
models wave propagation much better than the second-order

Figure 8. Amplitude Fourier spectrum of Gabor
signal used in the example of an effect of the grid
dispersion on a plane S-wave propagation.
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scheme. Moreover, grid dispersion in the second-order
scheme for the sampling ratios s � 1/10 and s � 1/12 is
larger than grid dispersion in the fourth-order scheme for s
� 1/5 and s � 1/6, respectively.

Compared to the fourth-order 2D P-SV FD scheme, the
grid dispersion in the fourth-order 3D FD scheme is consid-

erably less sensitive to a value of the stability parameter p.
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Figure 9. Example of an effect of the grid dispersion on a plane S-wave propagation
in a grid in two cases. First, a spatial sampling criterion is applied to the wavelength
at the predominant frequency of the signal (k0.5 Hz � 600 m). Second, a spatial sampling
criterion is applied to the wavelength at the frequency at which the amplitude spectrum
falls off by three orders of magnitude from its maximum value (k0.74 Hz � 405 m; see
Fig. 8). All numerical solutions are compared with the exact one. Medium: b � 300
m/sec, � � 1000 m/sec. Travel distance: 10,000 m. Direction of propagation: coor-
dinate axis. Stability parameter: p � 0.3.
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Figure 10. Comparison of the grid dispersion in the (a) fourth-order and (b) second-
order FD schemes. The dispersion curves are shown for the P and S waves propagating
in the three distinct directions (see Fig. 6) for the Poisson’s ratio r � 0.25 and four
values of the stability parameter p.

References

Aoi, S., and H. Fujiwara (1999). 3-D finite-difference method using dis-
continuous grids, Bull. Seism. Soc. Am. 89, 918–930.

Cotton, F., C. Berge, F. Lemeille, A. Pitarka, B. Lebrun, and M. Vallon
(1998). Three-dimensional simulation of earthquakes in the Greno-
ble’s basin, in The Effects of Surface Geology on Seismic Motion,
K. Irikura, K. Kudo, H. Okada, and T. Sasatani (Editors), Vol. 2,
Balkema, Rotterdam, 873–878.

Crase, E., C. Wideman, M. Noble, and A. Tarantola (1992). Nonlinear
elastic waveform inversion of land seismic reflection data, J. Geophys.
Res. 97, 4685–4703.

Graves, R. W. (1993). Modeling three-dimensional site response effects in
the Marina district basin, San Francisco, California, Bull. Seism. Soc.
Am. 83, 1042–1063.

Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic
media using staggered-grid finite differences, Bull. Seism. Soc. Am.
86, 1091–1106.

Graves, R. W., A. Pitarka, and P. G. Sommerville (1998). Ground-motion
amplification in the Santa Monica area: effects of shallow basin-edge
structure, Bull. Seism. Soc. Am. 88, 1224–1242.

Hestholm, S., and B. Ruud (1998). 3-D finite-difference elastic wave mod-
eling including surface topography, Geophysics 63, 613–622.

Kristek, J., P. Moczo, K. Irikura, T. Iwata, and H. Sekiguchi (1999). The



3D Fourth-Order Staggered-Grid Finite-Difference Schemes: Stability and Grid Dispersion 601

Figure 11. Comparison of the grid dispersion in the (a) 3D and (b) 2D P-SV cases.
The dispersion curves are shown for the P and S waves propagating in the direction of
the xz-plane diagonal for the Poisson’s ratio r � 0.25 and four values of the stability
parameter p.

1995 Kobe mainshock simulated by the 3D finite differences, in The
Effects of Surface Geology on Seismic Motion, K. Irikura, K. Kudo,
H. Okada, and T. Sasatani (Editors), Vol. 3, Balkema, Rotterdam,
1361–1368.

Levander, A. (1988). Fourth-order finite-difference P-SV seismograms,
Geophysics 53, 1425–1436.

Luo, Y., and G. Schuster (1990). Parsimonious staggered grid finite-differ-
encing of the wave equation, Geophys. Res. Lett. 17, 155–158.

Matsushima, S., H. Kawase, T. Sato, R. W. Graves, and P. G. Somerville
(1998). 3D simulation of aftershocks of the Hyogo-ken Nanbu earth-
quake of 1995, in The Effects of Surface Geology on Seismic Motion,
K. Irikura, K. Kudo, H. Okada, and T. Sasatani (Editors), Vol. 2,
Balkema, Rotterdam, 1129–1136.

Moczo, P., J. Kristek, and E. Bystrický (in press). Efficiency and optimi-
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Appendix

3D Fourth-Order Displacement-Stress Staggered-Grid FD Scheme

m�1 m m�1 2 U x,mU � 2U � U � (D t/q ) FI,K�1/2,L�1/2 I,K�1/2,L�1/2 I,K�1/2,L�1/2 I,K�1/2,L�1/2 I,K�1/2,L�1/2
2D t 1 xx,m xx,m� [a(T � T )I�3/2,K�1/2,L�1/2 I�3/2,K�1/2,L�1/2Uh qI,K�1/2,L�1/2

xx,m xx,m� b(T � T )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�1/2
xy,m xy,m� a(T � T )I,K�2,L�1/2 I,K�1,L�1/2

xy,m xy,m� b (T � T )I,K�1,L�1/2 I,K,L�1/2
xz,m xz,m� a (T � T )I,K�1/2,L�2 I,K�1/2,L�1

xz,m xz,m� b (T � T )]I,K�1/2,L�1 I,K�1/2,L

m�1 m m�1 2 V y,mV � 2V � V � (D t/q ) FI�1/2,K,L�1/2 I�1/2,K,L�1/2 I�1/2,K,L�1/2 I�1/2,K,L�1/2 I�1/2,K,L�1/2
2D t 1 xy,m xy,m� [a(T � T )I�2,K,L�1/2 I�1,K,L�1/2Vh qI�1/2,K,L�1/2

xy,m xy,m� b(T � T )I�1,K,L�1/2 I,K,L�1/2
yy,m yy,m� a (T � T )I�1/2,K�3/2,L�1/2 I�1/2,K�3/2,L�1/2
yy,m yy,m� b (T � T )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�1/2

yz,m yz,m� a (T � T )I�1/2,K,L�2 I�1/2,K,L�1
yz,m yz,m� b (T � T )]I�1/2,K,L�1 I�1/2,K,L

m�1 m m�1 2 W z,mW � 2W � W � (D t/q ) FI�1/2,K�1/2,L I�1/2,K�1/2,L I�1/2,K�1/2,L I�1/2,K�1/2,L I�1/2,K�1/2,L
2D t 1 xz,m xz,m� [a(T � T )I�2,K�1/2,L I�1,K�1/2,LWh qI�1/2,K�1/2,L

xz,m xz,m� b (T � T )I�1,K�1/2,L I,K�1/2,L
yz,m yz,m� a (T � T )I�1/2,K�2,L I�1/2,K�1,L

yz,m yz,m� b (T � T )I�1/2,K�1,L I�1/2,K,L
zz,m zz,m� a (T � T )I�1/2,K�1/2,L�3/2 I�1/2,K�1/2,L�3/2

zz,m zz,m� b (T � T )]I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�1/2

1xx,m m mT � {(k � 2l) [a(U � U )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�1/2 I�2,K�1/2,L�1/2 I�1,K�1/2,L�1/2h
m m� b (U � U )]I�1,K�1/2,L�1/2 I,K�1/2,L�1/2

m m� k [a(V � V )I�1/2,K�1/2,L�1/2 I�1/2,K�2,L�1/2 I�1/2,K�1,I�1/2
m m� b (V � V )I�1/2,K�1,L�1/2 I�1/2,K,L�1/2

m m� a (W � W )I�1/2,K�1/2,L�2 I�1/2,K�1/2,L�1
m m� b (W � W )]}I�1/2,K�1/2,L�1 I�1/2,K�1/2,L

1yy,m m mT � {k [a(U � U )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�1/2 I�2,K�1/2,L�1/2 I�1,K�1/2,L�1/2h
m m� b (U � U )]I�1,K�1/2,L�1/2 I,K�1/2,L�1/2

m m� (k � 2l) [a (V � V )I�1/2,K�1/2,L�1/2 I�1/2,K�2,L�1/2 I�1/2,K�1,L�1/2
m m� b (V � V )]I�1/2,K�1,L�1/2 I�1/2,K,L�1/2

m m� k [a (W � W )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�2 I�1/2,K�1/2,L�1
m m� b (W � W )]}I�1/2,K�1/2,L�1 I�1/2,K�1/2,L

1zz,m m mT � {k [a (U � U )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�1/2 I�2,K�1/2,L�1/2 I�1,K�1/2,L�1/2h
m m� b(U � U )I�1,K�1/2,L�1/2 I,K�1/2,L�1/2

m m� a (V � V )I�1/2,K�2,L�1/2 I�1/2,K�1,L�1/2
m m� b (V � V )]I�1/2,K�1,L�1/2 I�1/2,K,L�1/2

m m� (k � 2l) [a (W � W )I�1/2,K�1/2,L�1/2 I�1/2,K�1/2,L�2 I�1/2,K�1/2,L�1
m m� b(W � W )]}I�1/2,K�1/2,L�1 I�1/2,K�1/2,L
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1xy,m m mT � l [a (U � U )I,K,L�1/2 I,K,L�1/2 I,K�3/2,L�1/2 I,K�3/2,L�1/2h
m m� b (U � U )I,K�1/2,L�1/2 I,K�1/2,L�1/2
m m� a (V � V )I�3/2,K,L�1/2 I�3/2,K,L�1/2

m m� b (V � V )]I�1/2,K,L�1/2 I�1/2,K,L�1/2

1xz,m m mT � l [a (U � U )I,K�1/2,L I,K�1/2,L I,K�1/2,L�3/2 I,K�1/2,L�3/2h
m m� b (U � U )I,K�1/2,L�1/2 I,K�1/2,L�1/2
m m� a (W � W )I�3/2,K�1/2,L I�3/2,K�1/2,L

m m� b (W � W )]I�1/2,K�1/2,L I�1/2,K�1/2,L

1yz,m m mT � l [a(V � V )I�1/2,K,L I�1/2,K,L I�1/2,K,L�3/2 I�1/2,K,L�3/2h
m m� b (V � V )I�1/2,K,L�1/2 I�1/2,K,L�1/2

m m� a (W � W )I�1/2,K�3/2,L I�1/2,K�3/2,L
m m� b (W � W )]I�1/2,K�1/2,L I�1/2,K�1/2,L

The second-order scheme is obtained from the fourth-order
scheme by inserting a � 0 and b � 1.

Grid-Dispersion Relations for the 2D P-SV
Fourth-Order Displacement-Stress Staggered-Grid
FD Scheme

grid 2�� r 1
� q arcsin p Fa� �� p p • s q 2�

grid 2�b r 1 p
� q arcsin Fb� �b p p • s rq 2�

where

7
q �

6
2F � {[a sin (3py sin d) � b sin (py sin d)]g

2 1/2� [a sin (3py cos d) � b sin (py cos d)] }

and

s
y � if g � �

r

or

y � s if g � b.

The stability parameter p is defined as

7 Dt
p � 2 �, p � 1.�

6 h

The grid-dispersion relations for the second-order scheme
are obtained by inserting a � 0, b � 1, and q � 1. The
stability parameter p in the second-order scheme is defined
as

Dt
p � 2 �, p � 1.�

h


