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[1] After publications by Emmerich and Korn [1987] and
Carcione et al. [1988a, 1988b] authors who implemented
realistic attenuation in the time-domain methods decided
for either of two rheological models – generalized
Maxwell body (as defined by Emmerich and Korn) or
generalized Zener body. Two parallel sets of papers and
mathematical formalisms developed during the years. We
have not found any comments on the other rheology.
Therefore, we review both models and show that, in fact,
they are equivalent. We also derive material-independent
anelastic functions. Citation: Moczo, P., and J. Kristek (2005),

On the rheological models used for time-domain methods of

seismic wave propagation, Geophys. Res. Lett., 32, L01306,

doi:10.1029/2004GL021598.

1. Introduction

[2] The rheological behavior of the Earth’s materials
can be modeled using viscoelastic models because it
combines behaviors of elastic solids and viscous fluids.
The observations show that the internal friction in the
Earth is nearly constant over the seismic frequency range.
This has been well recognized since the work of Liu et al.
[1976].
[3] For a linear isotropic viscoelastic material, the stress-

strain relation is given by Boltzmann principle. In a simple
scalar notation,

s tð Þ ¼
Z t

�1

y t � tð Þ_e tð Þdt ð1Þ

where s(t) is stress, _e(t) time derivative of strain, and y(t)
stress relaxation function defined as a stress response to
Heaviside unit step function in strain. The stress at a given
time t is determined by the entire history of the strain until
time t. Mathematically, the integral in equation (1) represents
a time convolution of the relaxation function and strain rate.
Using symbol * for the convolution and applying the
convolution’s property, we have

s tð Þ ¼ y tð Þ * _e tð Þ ¼ _y tð Þ * e tð Þ: ð2Þ

Since y(t) is the stress response to a unit step function in
strain, its time derivative M(t) is the stress response to the
Dirac d -function in strain. Therefore

s tð Þ ¼ M tð Þ * e tð Þ ð3aÞ

M tð Þ ¼ _y tð Þ ð3bÞ

Let F be the direct and F�1 the inverse Fourier transforms:

F x tð Þf g ¼
Z1
�1

x tð Þ exp �iwtð Þ dt;

F�1 X wð Þf g ¼ 1

2p

Z1
�1

X wð Þ exp iwtð Þ dw

with w being the angular frequency. The Fourier transform of
equation (3a) gives

s wð Þ ¼ M wð Þ 	 e wð Þ ð4Þ

where M(w) is a complex, frequency-dependent viscoelastic
modulus. From equations (3a), (3b), and (4) we get

y tð Þ ¼ F�1 M wð Þ
iw

� �
: ð5Þ

An instantaneous elastic response of the viscoelastic material
is given by the unrelaxed (elastic) modulus MU, a long-
term equilibrium response is given by the relaxed modulus
MR;MU = lim

t!0
M(t),MR = lim

t!1
M(t). In the frequency domain,

MU = lim
w!1

M(w), MR = lim
w!0

M(w). The modulus defect or

relaxation of modulus is

dM ¼ MU �MR: ð6Þ

The quality factor Q(w) is defined by Q(w) = Re M(w)/Im
M(w). Detailed introductions to the theory of viscoelasticity
can be found e.g., in work by Biot [1954], Fung [1965],
Ben-Menahem and Singh [1981], and Carcione [2001].
[4] Equation (4) indicates that the incorporation of the

linear viscoelasticity and consequently attenuation into the
frequency-domain computations is easy: real frequency-
independent moduli are replaced by complex, frequency-
dependent quantities (the correspondence principle). At the
same time, a numerical integration of the time-domain
stress-strain relation (1) is practically intractable due to
large computer time and memory requirements. Therefore
modelers incorporated oversimplified Q(w) laws.
[5] The breakthrough in incorporating realistic attenua-

tion into the time-domain computations was made by Day
and Minster [1984]. They pointed out that if M(w) is
a rational function with the nth-order denominator, the
inverse Fourier transform of equation (4) gives an nth-order
differential equation for s(t), which can be eventually
numerically solved much more easily than the convolution
integral. They, however, assumed that, in general, the
viscoelastic modulus is not a rational function. Therefore
they suggested approximating a viscoelastic modulus by a
nth-order rational function and determining its coefficients
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by the Padé approximant method. They obtained n ordinary
differential equations for n additional variables, which
replace the convolution integral. The sum of the internal
variables multiplied by the unrelaxed modulus gives an
additional viscoelastic term to the elastic stress. Day and
Minster [1984], in fact, also indirectly suggested the future
evolution – a direct use of the rheological models whose
M(w) is a rational function.
[6] In response to work of Day and Minster [1984],

Emmerich and Korn [1987] realized that an acceptable
relaxation function corresponds to rheology of what they
defined as the generalized Maxwell body – n Maxwell
bodies and one Hooke element (elastic spring) connected in
parallel - see Figure 1. Because the generalized Maxwell
body in the literature on rheology is defined without the
additional single Hooke element, we denote the model of
Emmerich and Korn [1987] as GMB-EK. The viscoelastic
modulus of the GMB-EK is a rational function. Emmerich
and Korn [1987] obtained for the new variables similar
differential equations as Day and Minster [1984]. Emmerich
and Korn [1987] demonstrated that their approach is better
than the approach based on the Padé approximant method
both in accuracy and computational efficiency. Indepen-
dently, Carcione et al. [1988a, 1988b], in accordance with
the approach of Liu et al. [1976], assumed the generalized
Zener body (GZB) - n Zener bodies, that is, n standard
linear bodies, connected in parallel; see Figure 1. Carcione
et al. [1988a, 1988b] developed a theory for the GZB and
introduced term memory variables.
[7] After publications by Emmerich and Korn [1987] and

Carcione et al. [1988a, 1988b] many different authors
decided either for the GMB-EK [e.g., Emmerich, 1992;

Fäh, 1992; Moczo and Bard, 1993; Moczo et al., 1997; Kay
and Krebes, 1999] or GZB [e.g., Robertsson et al., 1994;
Blanch et al., 1995; Xu and McMechan, 1995; Robertsson,
1996; Hestholm, 2002]. In both cases the authors followed
the corresponding mathematical formalisms. In the afore-
mentioned and many other papers we have found neither
direct comparison nor any comment on the other rheology
and the corresponding algorithms. Therefore, we briefly
review both rheological models and show their relation.

2. The GZB and GMB-EK Rheological Models

[8] In Table 1 we summarize frequency-domain rules for
linear rheological models. Using the rules it is easy to find
the stress-strain relation in the frequency domain and thus
the viscoelastic modulus.
[9] For the GMB-EK we find

M wð Þ ¼ MH þ
Xn
l¼1

iMlw
wl þ iw

ð7Þ

with relaxation frequencies

wl ¼ Ml=hl ; l ¼ 1; . . . ; n:

The relaxed and unrelaxed moduli areMR � lim
w!0

M(w) =MH

and MU � lim
w!1

M(w) = MR +
Pn
l¼1

Ml. Since, equation (6),

MU = MR + dM, we can see that

Ml ¼ dMl:

Figure 1. (left) Generalized Maxwell Body, GMB-EK, defined by Emmerich and Korn [1987]. MH and Ml denote elastic
moduli, hl viscosity. (right) Generalized Zener Body, GZB. For a classical Zener body (standard linear body) there are two
equivalent models: H-p-M - Hooke element connected in parallel with Maxwell body, and H-s-KV - Hooke element
connected in series with Kelvin-Voigt body. In the H-p-M model it is easier to recognize the relaxed modulus MRl and
modulus defect dMl. M1l and M2l in the H-s-KV model denote elastic moduli, hl in both models viscosity.
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Without loss of generality we can consider dMl = aldM;Pn
l¼1

al = 1. Then

M wð Þ ¼ MR þ dM
Xn
l¼1

ialw
wl þ iw

: ð8Þ

Using equation (5) we obtain the relaxation function

y tð Þ ¼ MR þ dM
Xn
l¼1

ale
�wl t

" #
	 H tð Þ ð9Þ

where H(t) is the Heaviside unit step function. The above
formulas were presented by Emmerich and Korn [1987].
[10] From the two equivalent models of the GZB

(Figure 1, right) we choose the one in which a single ZB
is of the H-p-M type (Hooke element in parallel with
Maxwell body). This is because we can immediately see
the meaning (MRl, dMl) of the elastic moduli of both Hooke
elements in each ZB. Using the rules in Table 1 we get

M wð Þ ¼
Xn
l¼1

MRl

1þ itelw
1þ itslw

with relaxation times

tel ¼
hl
dMl

MU l

MR l

; tsl ¼
hl
dMl

;
tel
tsl

¼ MU l

MR l

and

MU l ¼ MRl þ dMl:

The unrelaxed and relaxed moduli are MR � lim
w!0

M(w) =Pn
l¼1

MRl and MU � lim
w!1

M(w) =
Pn
l¼1

MRl
tel
tsl

= MR +
Pn
l¼1

dMl. The

relaxation function is

y tð Þ ¼
Xn
l¼1

MRl 1� 1� tel
tsl

� 	
e�t=tsl


 �( )
	 H tð Þ ð10Þ

Defining [Carcione, 2001]

MRl ¼
1

n
MR ð11Þ

we get

M wð Þ ¼ MR

n

Xn
l¼1

1þ itelw
1þ itslw

;

y tð Þ ¼ MR 1� 1

n

Xn
l¼1

1� tel
tsl

� 	
e�t=tsl

" #
	 H tð Þ:

ð12Þ

Formulas (11) and (12) were presented by Carcione [2001].
Note that Liu et al. [1976], in generalizing the strain-stress

relation for one ZB (equation 16 in their paper) to the
relation for the GZB (equation 22 in their paper), introduced
an error, which then has been repeated in the following
papers dealing with the incorporation of the attenuation
based on the GZB - even after Carcione [2001] published
correct formulas for the relaxation function and modulus. In
all papers we found, there is the same error – the missing
factor 1/n in the viscoelastic modulus and relaxation
function.

3. The Relation Between the GZB and GMB-EK

[11] Consider again the ZB (H-p-M) model. Using the
rules (Table 1) for the ZB l gives

sl wð Þ 	 1

dMl

þ 1

ihlw

� 	
¼ 1þMRl

dMl

þMRl

ihlw

� 	
	 e wð Þ: ð13Þ

Defining relaxation frequency

wl ¼ dMl=hl

and rearranging equation (13) we get

sl wð Þ ¼ Ml wð Þ 	 e wð Þ ; Ml wð Þ ¼ MRl þ
idMlw
wl þ iw

:

For n ZB (H-p-M) connected in parallel, that is, for the GZB
(Figure 1, right) the stress is

s wð Þ ¼
Xn
l¼1

sl wð Þ ¼
Xn
l¼1

Ml wð Þ
" #

	 e wð Þ

and thus

M wð Þ ¼
Xn
l¼1

MRl þ
Xn
l¼1

idMlw
wl þ iw

:

We easily find that

MR ¼
Xn
l¼1

MRl ; MU ¼ MR þ
Xn
l¼1

dMl:

Since MU = MR + dM, without loss of generality we can
consider

dMl ¼ aldM ;
Xn
l¼1

al ¼ 1

and get

M wð Þ ¼ MR þ dM
Xn
l¼1

ialw
wl þ iw

: ð14Þ

We see that for the GZB (H-p-M), Figure 1 (right), we
obtained exactly the same M(w) as it has been obtained by
Emmerich and Korn [1987] for their GMB-EK (Figure 1,
left), equation (8) in this paper. It is also easy to get the same
viscoelastic modulus for the GZB (H-s-KV). We can also
rewrite non-simplified y(t) for the GZB, equation (10), into

Table 1. Frequency-Domain Rules for Linear Rheological Models

Element Stress-Strain Relation

Hooke (spring) s(w) = M 	 e(w), M - elastic modulus
Stokes (dashpot) s(w) = iwh 	 e(w), h - viscosity

Connection s e

in series equal additive
in parallel additive equal
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the form of y(t) for the GMB-EK, equation (9), without any
simplification. In other words, the rheology of the GMB-EK
and GZB is one and the same.

4. Derivation of the Material-Independent
Anelastic Functions

[12] Having recognized the equivalence of the GMB-EK
and GZB models, we can finish with derivation of the
anelastic functions (memory variables). Day and Minster
[1984], Emmerich and Korn [1987], and Carcione et
al. [1988a, 1988b] introduced their memory variables as
material-dependent. Kristek and Moczo [2003] introduced
material-independent anelastic functions. They explained
why and showed numerical tests. They did not show the
derivation directly from the basic rheological equations for
the GMB-EK.
[13] Rewrite the viscoelastic modulus (14) and relaxation

function (9) using the unrelaxed modulus,

M wð Þ ¼ MU � dM
Xn
l¼1

alwl

wl þ iw

and

y tð Þ ¼ MU � dM
Xn
l¼1

al 1� e�wl tð Þ
" #

	 H tð Þ;

and obtain the time derivative of the relaxation function

M tð Þ ¼ _y tð Þ ¼ �dM
Xn
l¼1

alwle
�wl t 	 H tð Þ

þ MU � dM
Xn
l¼1

al 1� e�wl tð Þ
" #

	 d tð Þ: ð15Þ

Inserting equation (15) into equation (3a) gives

s tð Þ ¼ �
Z t

�1

dM
Xn
l¼1

alwle
�wl t�tð Þ 	 H t � tð Þ 	 e tð Þdt

þ
Z t

�1

MU 	 d t � tð Þ 	 e tð Þdt

�
Z t

�1

dM
Xn
l¼1

al 1� e�wl t�tð Þ
� �

	 d t � tð Þ 	 e tð Þdt

and

s tð Þ ¼ MU 	 e tð Þ � dM
Xn
l¼1

alwl

Z t

�1

e tð Þ 	 e�wl t�tð Þdt: ð16Þ

Defining a material-independent anelastic functions

zl tð Þ ¼ wl

Z t

�1

e tð Þ 	 e�wl t�tð Þdt ; l ¼ 1; . . . ; n ð17Þ

we rewrite the stress-strain relation (16) in the form

s tð Þ ¼ MU 	 e tð Þ �
Xn
l¼1

dM al zl tð Þ: ð18Þ

Applying time derivative to equation (17) we get

_zl tð Þ ¼ wl

d

dt

Z t

�1

e tð Þ 	 e�wl t�tð Þdt

¼ wl �wl

Z t

�1

e tð Þ 	 e�wl t�tð Þdtþ e tð Þ

2
4

3
5

¼ wl �zl tð Þ þ e tð Þ½ �

and

_zl tð Þ þ wlzl tð Þ ¼ wle tð Þ ; l ¼ 1; . . . ; n: ð19Þ

Equations (18) and (19) define the time-domain stress-strain
relation for the viscoelastic medium with the GMB-EK
(equivalently, GZB) rheology. Its generalization to the 3D
case can be found in Kristek and Moczo [2003]. In the
velocity-stress formulation, the stress and strains are simply
replaced by their time derivatives in equations (18) and (19).

5. Conclusions

[14] We have explicitly shown the equivalence of the
generalized Maxwell body (GMB-EK) as defined by
Emmerich and Korn [1987] and generalized Zener body
(GZB).
[15] Two parallel streams of papers and development of

incorporation of the realistic attenuation into the time-
domain methods should be reviewed and compared in terms
of unifying and simplifying the whole relevant theory,
including curve-fitting procedures.
[16] Except for Carcione [2001], we have not found the

correct relaxation function for the GZB. We suggest
researchers that have used the formulas from the work of
Liu et al. [1976] to check their implementations.

[17] Acknowledgments. This work was supported by the Marie
Curie Research Training Network SPICE Contract No. MRTN-CT-2003-
504267. R. W. Graves and F. J. Sánchez-Sesma helped to improve the
paper.
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