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S U M M A R Y

We present an extension of the theory of the time-frequency (TF) misfit criteria for quantitative

comparison of time signals. We define TF misfit criteria for quantification and characterization

of disagreement between two three-component signals. We distinguish two cases—with and

without having one signal as reference. We define locally and globally normalized TF criteria.

The locally normalized misfits can be used if it is important to investigate relatively small

parts of the signal (e.g. wave groups, pulses, transients, spikes, so-called seismic phases) no

matter how large amplitudes of those parts are with respect to the maximum amplitude of the

signal. They provide a detailed TF anatomy of the disagreement between two entire signals.

The globally normalized misfits can be used for quantifying an overall level of disagreement.

They allow accounting for both the envelope/phase difference at a TF point and the significance

of the envelope at that point with respect to the maximum envelope of the signal.

We also introduce the TF envelope and phase goodness-of-fit criteria based on the complete

signal representation, and thus suitable for comparing arbitrary time signals in their entire

TF complexity. The TF goodness-of-fit criteria quantify the level of agreement and are most

suitable in the case of larger differences between the signals.

We numerically demonstrate the capability and important features of the TF misfit and

goodness-of-fit criteria in the methodologically important examples.

Key word: Time series analysis.

1 I N T RO D U C T I O N

Quantitative comparison of time signals, time histories of physical

or chemical quantities is often necessary in many problems. Devel-

oping and testing a new theoretical method of calculation requires

comparison of a theoretical signal with a reference or exact solution.

Comparison of a theoretical signal with a measured one is necessary

to verify the theoretical model of an investigated process. Compar-

ison of two measured signals significantly helps in the analysis and

interpretation of the process under investigation.

A simple visual comparison of two signals can be useful in some

cases. Sometimes the simplest possible misfit, a difference D(t) =
s(t) − sr (t) between the tested signal s(t) and reference signal sr(t),

t being time, is better. A single-valued integral quantity is more

appropriate if a set of signals is to be compared with another set of

signals. A simple single-valued misfit between two signals can be

defined as M D =
∑

t |D (t)|/
∑

t |sr (t) |. Probably the root mean

square (rms) misfit, rms =
√

∑

t |D (t)| 2/
∑

t |sr (t) | 2 is the most

commonly used single-valued misfit criterion.

Although each of the three above quantities somehow estimates

a difference between two signals, it is not so difficult to find out that

none of them is capable to characterize the nature or reason of the

difference. Consequently and eventually it is not clear at all whether

they are capable to properly quantify the difference. Therefore,

Kristekova et al. (2006) developed time-frequency (TF) envelope

and phase misfit criteria and demonstrated their capability to prop-

erly quantify and characterize a difference between two signals.

The very basic arguments for developing criteria based on the TF

representation of signals that are to be compared are:

1. One of the two signals can be viewed as some modification of

the other signal. It is clear then that some modifications of the signal

can be more visible and understandable in the time domain, some

in the frequency domain. Some modifications can change mainly or

only amplitudes and an envelope, some other a phase.

2. The most complete and informative characterization of a sig-

nal can be obtained by its TF representation (in this sense we can

also say decomposition in the TF plane). The TF representation en-

ables us to see a spectral content at any time as well as time history

at any frequency.

The TF criteria of Kristekova et al. (2006) were applied,

for example by Pérez-Ruiz et al. (2007), Moczo et al. (2007),

Benjemaa et al. (2007), Käser et al. (2008), Fichtner & Igel (2008)

and Santoyo & Luzon (2008). The criteria were also used for
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evaluation of the international numerical benchmark ESG 2006

for Grenoble valley (Tsuno et al. 2006; Chaljub et al. 2009a,b),

Bielak et al. (2008) applied the criteria to compare three nu-

merical simulations for the ShakeOut earthquake scenario ver-

sion 1.1 for the southern California. The criteria serve for com-

parison of submitted solutions in the framework of the SPICE

Code Validation (Igel et al. 2005; Moczo et al. 2006; Gallovic

et al. 2007, http://www.nuquake.eu/SPICECVal/). The recently or-

ganized numerical benchmark for the ground motion simulation

for the Euroseistest site, Mygdonian basin, Greece (https://www-

cashima.cea.fr/) will also apply the TF misfit criteria for evaluation

of the submitted predictions.

The paper by Kristekova et al. (2006) presented TF misfit criteria

for one-component signals in the case when one of the two signals

could be considered a reference. The paper emphasized the glob-

ally normalized criteria and only marginally mentioned the locally

normalized criteria.

Clearly, the paper presented by Kristekova et al. (2006) did not

address all important aspects and situations in comparing signals

in the research practice. This was also clear from frequently asked

questions arising in response to the paper. The questions basically

concern the following.

(1) The definition of the TF misfits in the case when none of

signals can be considered a reference.

(2) The application of the TF misfits to three-component signals.

(3) The applicability of the TF misfits if the signals, that are to

be compared, differ ‘too much’, and consequently the relation of

the TF misfit criteria to the goodness-of-fit criteria.

(4) The global versus local normalization.

(5) The evaluation and interpretation of the phase misfits, mainly

the relation to the phase jumps.

Correspondingly, in this paper we first briefly summarize the very

basic concepts and relations necessary for the further exposition.

We then pay attention to the concepts of the envelope and phase dif-

ferences, and strategies for defining TF misfit criteria. We continue

with definitions of the TF misfit criteria for three-component sig-

nals in both situations—with and without having a reference signal.

Whereas the misfit criteria are supposed to quantify and characterize

differences between signals, goodness-of-fit criteria are supposed to

quantify the level of agreement between signals. For such situations

we introduce TF goodness-of-fit criteria and discuss their relation

to the TF misfit criteria. Eventually we numerically illustrate the

TF misfit and goodness-of-fit criteria using two methodologically

important problems.

2 C H A R A C T E R I Z AT I O N O F A S I G NA L

Here we only very briefly present concepts and relations for char-

acterization of a signal necessary in the further exposition.

2.1 Basic characteristics of a simple signal

In the simplest case of a monochromatic signal

sm (t) = A cos (2π f t + φ) (1)

amplitude A, phase φ and frequency f are unambiguously defined

and very easy to interpret. If a signal is more complex, notion of

amplitude, phase and frequency may be not so obvious because, for

example, when A = A(t), f = f (t) and φ = φ(t) in the argument

of the cosine function, amplitude and phase are ambiguous.

The analytical signal (e.g. Flandrin 1999) enables us to develop

proper unambiguous characteristics. The analytical signal s̃(t) with

respect to signal s(t) is

s̃ (t) = s (t) + i H {s (t)} , (2)

where H{s(t)} is the Hilbert transform of signal s(t). Relations

A(t) = |s̃(t)|, φ(t) = Arg[s̃(t)], (3)

and

f (t) =
1

2π

d Arg [s̃ (t)]

dt

define envelope, phase and (so-called instantaneous) frequency of

the signal at time t. Although these quantities are unambiguous, they,

in fact, represent just averaged values. For example, Qian (2002)

suggests using a term ‘the mean instantaneous frequency’ instead

of the instantaneous frequency. The narrower the spectral content

at time t is, the better is the estimate of the dominant amplitude,

phase, and frequency by relations (3).

Although the concept of the analytical signal can be applied to

simple signals and serve as a basis for simple misfit criteria (e.g.

Kristek et al. 2002; Kristek & Moczo 2006), it clearly cannot be

applied to signals with a complex spectral contents changing with

time if the three basic characteristics are to be determined.

2.2 Time-frequency representation of a signal

An instantaneous spectral content of a signal or a time evolution at

any frequency of the signal can be obtained using the TF representa-

tion of the signal. The TF representation can be obtained using, for

example, the continuous wavelet transform. The continuous wavelet

transform of signal s(t) is defined by

CWT (a,b) {s(t)} =
1

√
|a |

∞
∫

−∞

s(t)ψ∗
(

t − b

a

)

dt (4)

with t being time, a the scale parameter, b translational parameter,

and ψ analysing wavelet. Star denotes the complex conjugate func-

tion. The scale parameter a is inversely proportional to frequency

f . Consider an analysing wavelet with a spectrum, which has zero

amplitudes at negative frequencies. Such a wavelet is an analytical

signal and is called the progressive wavelet. A Morlet wavelet

ψ(t) = π−1/4 exp(iω0t) exp(−t2/2) (5)

with ω0 = 6 is a proper choice for a wide class of signals and prob-

lems. The TF representation of signal s(t) based on the continuous

wavelet transform, W (t, f ), can be then defined by choosing a re-

lation between the scale parameter a and frequency f in the form

a = ω 0/.2 π f , and replacing b by t (because the translational

parameter b corresponds to time). We obtain

W (t, f ) = CWT ( f,t){s(t)}

=

√

2π | f |
ω0

∞
∫

−∞

s(τ )ψ∗
(

2π f
τ − t

ω0

)

dτ. (6)

W 2(t , f ) represents the energy distribution (energy density) of

the signal in the TF plane. A more detailed mathematical back-

ground on the continuous wavelet transform and Morlet wavelet

can be found, for example, in monographs by Daubechies (1992)

and Holschneider (1995), Kristekova et al. (2006, 2008b) numer-

ically demonstrated very good properties of the TF representation

defined above.
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Having determined the TF representation, an envelope A(t , f )

and phase φ(t , f ) at a given point of the TF plane can be defined

A (t, f ) = |W (t, f )| , φ (t, f ) = Arg [W (t, f )] . (7)

Holschneider (1995) showed that if W (t , f ) is defined using

the continuous wavelet transform with the progressive wavelet, the

envelope A(t , f ) and phase φ (t , f ) are consistent with those defined

using the analytical signal.

Note that this TF representation does not suffer from the well-

known problems and limitations of the windowed Fourier transform

due to the fixed TF resolution of the windowed Fourier transform.

The software package SEIS-TFA developed by Kristekova (2006)

for numerical computation of the TF representation using the con-

tinuous wavelet transform and six other methods is available at

http://www.nuquake.eu.

3 C O M PA R I S O N O F S I G NA L S

3.1 TF envelope and phase differences

Consider a signal s(t) and a reference signal sr(t). Given (6) and (7)

it is clear that

1A (t, f ) = A (t, f ) − Ar (t, f ) = |W (t, f )| − |Wr (t, f )| (8)

defines the difference between two envelopes at each (t, f ) point.

Similarly,

1φ (t, f ) = φ (t, f ) − φr (t, f )

= Arg [W (t, f )] − Arg [Wr (t, f )]
(9)

defines the difference between two phases at each (t, f ) point.

The envelope difference 1A(t , f ) is an absolute local difference

that can attain any value. The phase difference needs some explana-

tion. The little complication comes from the fact that Arg [ξ ] always

gives the phase of the complex variable ξ in the range of 〈−π , π〉.
If, for example, two phases are 170π/180 and −160π/180, eq. (9)

formally gives 330π/180 instead of the correct value −30π /180. It

is clear that definition (9) would need an additional condition to treat

similar situations. Instead, however, we can avoid this complication

using the following equivalent definition

1φ (t, f ) = Arg

[

W (t, f )

Wr (t, f )

]

. (10)

Relation (10) always gives a local phase difference in the range

of 〈−π , π〉.

3.2 Strategies for defining TF misfit criteria

Having the envelope and phase differences at a given (t, f ) point,

we can define a variety of the TF misfit criteria to quantitatively

compare the entire signals, important parts or characteristics of the

signals.

In many problems it is important to investigate relatively small

parts of the signal (e.g. wave groups, pulses, transients, spikes, so-

called seismic phases) no matter how large amplitudes of those parts

are with respect to the maximum amplitude of the entire signal. As

an example of an important seismic phase we can mention the man-

tle phase PcP—the seismic P wave reflected at the core–mantle

boundary. In some problems one may be interested in a detailed

TF anatomy of the disagreement between two entire signals. For

comparing two signals in such situations we need to define local

misfit criteria–criteria whose values for one (t, f ) point would de-

pend only on the characteristics at that (t, f ) point. Consider a local

TF misfit criterion for the envelope. It is clear that such criterion

should quantify the relative difference between two envelopes at a

given (t, f ) point. Consequently, 1A(t , f ) given by eq. (8) should

be normalized by Ar (t , f ). At the same time, due to its nature, the

phase difference (10) itself provides the proper quantification for a

local TF phase misfit criterion. We can choose, however, the range

〈−1, 1〉 instead of 〈−π , π〉: we can divide the phase difference (10)

by π .

The preceding considerations can be taken as arguments and basis

for defining the locally normalized TF misfit criteria. Then

TFEMLOC (t, f ) =
1A (t, f )

Ar (t, f )
(11)

and

TFPMLOC (t, f ) =
1φ (t, f )

π
(12)

define the locally normalized TF envelope (TFEMLOC) and phase

(TFPMLOC) misfit criteria, respectively.

In some analyses it may be reasonable to give the largest weights

to local envelope/phase differences for those parts of the reference

signal in which the envelope reaches the largest values. For example,

it may be reasonable to require that the envelope misfit be equal to

the absolute local envelope difference 1A(t , f ) just at that (t, f )

point at which envelope Ar (t , f ) of the reference signal reaches

its maximum maxt, f {Ar (t, f )}. At the other (t, f ) points with the

envelope smaller than maxt, f {Ar (t, f )} (and therefore also with

smaller energy content) such a misfit could be proportional to the

ratio between Ar (t , f ) and maxt, f {Ar (t, f )}. Both requirements

are met in the following definitions

TFEMGLOB (t, f ) =
Ar (t, f )

maxt, f {Ar (t, f )}
TFEMLOC (t, f )

=
1A (t, f )

maxt, f {Ar (t, f )}
, (13)

TFPMGLOB (t, f ) =
Ar (t, f )

maxt, f {Ar (t, f )}
TFPMLOC (t, f )

=
Ar (t, f )

maxt, f {Ar (t, f )}
1φ (t, f )

π
. (14)

Because the definitions apply the normalization by

maxt, f {Ar (t, f )} at each (t , f ) point, we can speak of the

globally normalized TF envelope (TFEMGLOB) and phase

(TFPMGLOB) misfit criteria. Clearly, the values of the globally

normalized TF misfit criteria account for both the envelope/phase

difference at a (t, f ) point and the significance of the envelope at that

point with respect to the maximum envelope of the reference signal.

In this sense they quantify an overall level of disagreement between

two signals. We apply the global normalization in definition of the

TF misfits when we are not much interested in a detailed anatomy

of the signals and misfits in those parts of the signal where its

amplitudes are too small compared to the maximum amplitude of

the reference signal. The globally normalized misfit criteria can be

useful, for example, in the earthquake ground motion analyses and

earthquake engineering where we are usually not much interested in

particular wave groups with relatively small amplitudes.
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4 T F M I S F I T C R I T E R I A F O R

T H R E E - C O M P O N E N T S I G NA L S

4.1 Three-component signals, one signal being a reference

The above considerations on the globally normalized misfit criteria

for one-component signals can be extended also to the misfits for

three-component signals. If amplitudes of one component of the

reference signal are significantly smaller than amplitudes of two

other components (a common situation with a polarized particle

motion, for example), the only reasonable choice for the global

normalization is to take the maximum TF envelope value from

all three components of the reference signal. This choice naturally

quantifies the misfits with respect to the meaningful values of the

three-component reference signal. It also prevents obtaining too

large misfit values due to possible division by very small envelope

values corresponding to insignificant amplitudes of the signal com-

ponents. Clearly, this choice is reasonable also if the amplitudes of

all three components of the signals are comparable.

A formal definition of one local normalization factor for all three

components would clearly contradict to the local character. Each

component has to be treated as, one-component“ signal if one is

interested in the detailed anatomy of the TF misfit.

Now we can define a set of the misfit criteria for the three-

component signals when one of them can be considered a refer-

Table 1. Locally and globally normalized TF misfit criteria for three-component signals, one signal being a reference.

si(t) ; i = 1, 2, 3 A three-component signal

sr i (t) ; i = 1, 2, 3 A three-component reference signal

W i = W i (t, f ) TF representation of signal si(t)

Wr i = Wr i (t, f ) TF representation of the reference signal sri(t)

Time-frequency envelope and phase misfits

Locally normalized TF envelope misfit TFEM REF
LOC,i (t, f ) =

|Wi | − |Wri |
| Wri |

Locally normalized TF phase misfit TFPM REF
LOC,i (t, f ) =

1

π
Arg

[

Wi

Wr i

]

Globally normalized TF

{

envelope

phase

}

misfit

{

TFEM REF
GLOB,i (t, f )

TFPM REF
GLOB,i (t, f )

}

=
|Wri |

max i ; t, f (|Wri |)

{

TFEM REF
LOC,i

(t, f )

TFPM REF
LOC,i

(t, f )

}

Time-dependent envelope and phase misfits

Locally normalized Globally normalized

{

TEM REF
LOC,i (t)

TPM REF
LOC,i

(t)

}

=

∑

f | Wri |
{

TFEM REF
LOC,i

(t, f )

TFPM REF
LOC,i

(t, f )

}

∑

f
| Wri |

{

TEM REF
GLOB,i (t)

TPM REF
GLOB,i

(t)

}

=

∑

f
| Wri |

{

TFEM REF
LOC,i

(t, f )

TFPM REF
LOC,i

(t, f )

}

max i ; t

(

∑

f
|Wri |

)

Frequency-dependent envelope and phase misfits

Locally normalized Globally normalized

{

FEM REF
LOC,i ( f )

FPM REF
LOC,i ( f )

}

=

∑

t
|Wri |

{

TFEM REF
LOC,i (t, f )

TFPM REF
LOC,i (t, f )

}

∑

t
|Wri |

{

FEM REF
GLOB,i ( f )

FPM REF
GLOB,i ( f )

}

=

∑

t
|Wri |

{

TFEM REF
LOC,i (t, f )

TFPM REF
LOC,i (t, f )

}

max i ; f

(

∑

t
|Wri |

)

Single-valued envelope and phase misfits

Locally normalized Globally normalized

{

EM REF
LOC,i

PM REF
LOC,i

}

=

√

√

√

√

√

√

√

√

∑

f

∑

t
|Wri | 2

∣

∣

∣

∣

∣

{

TFEM REF
LOC,i

(t, f )

TFPM REF
LOC,i

(t, f )

}
∣

∣

∣

∣

∣

2

∑

f

∑

t
|Wri | 2

{

EM REF
GLOB,i

PM REF
GLOB,i

}

=

√

√

√

√

√

√

√

√

∑

f

∑

t
|Wri | 2

∣

∣

∣

∣

∣

∣







TFEM REF
LOC,i

(t, f )

TFPM REF
LOC,i

(t, f )







∣

∣

∣

∣

∣

∣

2

maxi

(

∑

f

∑

t
|Wri | 2

)

ence. The locally normalized and globally normalized TF envelope

misfits TFEMREF
LOC, i (t , f ) and TFEMREF

GLOB,i (t , f ), and locally nor-

malized and globally normalized TF phase misfits TFPMREF
LOC,i (t , f )

and TFPMREF
GLOB, i (t , f ) characterize how the envelopes and phases

of the two signals differ at each (t, f ) point. Their projection onto

the time domain gives time-dependent envelope and phase mis-

fits, TEMREF
LOC, i (t), TEMREF

GLOB, i (t), TPMREF
LOC, i (t) and TPMREF

GLOB, i (t).

Similarly, the projection of the TF misfits onto the frequency

domain gives frequency-dependent envelope and phase misfits,

FEMREF
LOC, i ( f ), FEMREF

GLOB, i ( f ), FPMREF
LOC, i ( f ) and FPMREF

GLOB, i ( f ).

Finally, it is often very useful to have single-valued envelope and

phase misfits, EMREF
LOC, i , EMREF

GLOB, i , PMREF
LOC, i and PMREF

GLOB, i . All the

misfits are summarized in Tables 1 and 2. The envelope and phase

misfits can attain any value in the range 〈−∞, ∞〉 and 〈−1, 1〉,
respectively.

4.2 Three-component signals, none being a reference

The misfit criteria for this case can be defined, in fact, formally in

the same way as criteria in the case with a reference signal. The only

question is which of the two signals should be formally taken as a

reference. The reasonable way is to find a maximum envelope for

each of the two signals. Then the signal with a smaller maximum

can be chosen as a reference signal. In the case of the globally

normalized criteria for the three-component signals the maximum

C© 2009 The Authors, GJI, 178, 813–825

Journal compilation C© 2009 RAS



TF misfit and goodness-of-fit criteria 817

Table 2. Locally and globally normalized TF misfit criteria for three-component signals, none being a reference.

s1 i (t), s2 i (t) ; i = 1, 2, 3 two 3-component signals

W 1 i = W 1 i (t, f ) , W 2 i = W 2 i (t, f ) TF representations of signals s1i(t) and s2i(t)

Wr i

= W 1i if max i ; t, f (|W 1i |) < max i ; t, f (|W 2i |)

= W 2i if max i ; t, f (|W 1i |) ≥ max i ; t, f (|W 2i |)

Time-frequency envelope and phase misfits

Locally normalized TF envelope misfit TFEM LOC,i (t, f ) =
|W 1i | − |W 2i |

|Wri |
Locally normalized TF phase misfit TFPM LOC,i (t, f ) =

1

π
Arg

[

W 1i

W 2 i

]

Globally normalized TF

{

envelope

phase

}

misfit

{

TFEM GLOB,i (t, f )

TFPM GLOB,i (t, f )

}

=
| Wri |

max i ; t, f (| Wri |)

{

TFEM LOC,i (t, f )

TFPM LOC,i (t, f )

}

Time-dependent envelope and phase misfits

Locally normalized Globally normalized

{

TEM LOC,i (t)

TPM LOC,i
(t)

}

=

∑

f
|Wri |

{

TFEM LOC,i
(t, f )

TFPM LOC,i
(t, f )

}

∑

f
|Wri |

{

TEM GLOB,i (t)

TPM GLOB,i
(t)

}

=

∑

f
|Wri |

{

TFEM LOC,i
(t, f )

TFPM LOC,i
(t, f )

}

max i ; t

(

∑

f
|Wri |

)

Frequency-dependent envelope and phase misfits

Locally normalized Globally normalized

{

FEM LOC,i ( f )

FPM LOC,i
( f )

}

=

∑

t
|Wri |

{

TFEM LOC,i
(t, f )

TFPM LOC,i
(t, f )

}

∑

t
|Wri |

{

FEM GLOB,i ( f )

FPM GLOB,i
( f )

}

=

∑

t
|Wri |

{

TFEM LOC,i
(t, f )

TFPM LOC,i
(t, f )

}

max i ; f

(

∑

t
|Wri |

)

Single-valued envelope and phase misfits

Locally normalized Globally normalized

{

EM LOC,i

PM LOC,i

}

=

√

√

√

√

√

√

√

∑

f

∑

t
|Wri | 2

∣

∣

∣

∣

∣

{

TFEM LOC,i
(t, f )

TFPM LOC,i
(t, f )

}
∣

∣

∣

∣

∣

2

∑

f

∑

t
|Wri | 2

{

EM GLOB,i

PM GLOB,i

}

=

√

√

√

√

√

√

√

√

∑

f

∑

t
|Wri | 2

∣

∣

∣

∣

∣

{

TFEM LOC,i
(t, f )

TFPM LOC,i
(t, f )

}
∣

∣

∣

∣

∣

2

maxi

(

∑

f

∑

t
|Wri | 2

)

is taken from all components. In the case of the locally normalized

criteria the reference signal should be chosen separately for each

component.

Note that the evaluation of the TF misfits themselves does not give

a reason to prefer the smaller of the two maxima. Our choice comes

from the possible link to the goodness-of-fit criteria developed by

Anderson (2004). We take the smaller maximum consistently with

the Anderson’s criteria discussed later.

5 T F G O O D N E S S - O F - F I T C R I T E R I A

The envelope TF misfits, as defined in the previous chapter, quantify

and characterize how much two envelopes differ from each other.

Correspondingly, the envelope misfit can attain any value within the

range of (−∞, ∞) with 0 meaning the agreement. While formally

applicable to any level of disagreement, clearly, the envelope misfits

are most useful for comparing relatively close envelopes.

However, in practice it is often necessary to compare signals

whose envelopes differ relatively considerably. Comparison of real

records with synthetics in some problems can be a good example. In

such a case it is reasonable to look for the level of agreement rather

than details of disagreement. The goodness-of-fit criteria provide a

suitable tool for this.

The goodness-of-fit criteria approach zero value with an increas-

ing level of disagreement. On the other hand, some finite value is

chosen to quantify the agreement.

The TF envelope goodness-of-fit criteria can be introduced on

the basis of the TF envelope misfits

TFEG (t, f ) = A exp
{

− |TFEM (t, f ) | k
}

,

TEG (t) = A exp
{

− |TEM (t) | k
}

,

FEG ( f ) = A exp
{

− |FEM ( f ) | k
}

,

EG = A exp
{

− |EM | k
}

,

A > 0, k > 0 . (15)

Here, factor A quantifies the agreement between two envelopes in

terms of the chosen envelope misfit: The envelope goodness-of-fit

criterion is equal to A if the envelope misfit is equal to 0. Choice of

the exponent k determines sensitivity of the goodness-of-fit value

with respect to the misfit value. If A = 10 and k = 1, the right-hand

side of eq. (15) becomes formally similar to Anderson’s formula.

Similarly we can define TF phase goodness-of-fit criteria as the

goodness-of-fit equivalents to the TF phase misfit criteria:

TFPG (t, f ) = A
(

1 − |TFPM (t, f ) |k
)

TPG (t) = A
(

1 − |TPM (t) |k
)

,

FPG ( f ) = A
(

1 − |FPM ( f ) |k
)

,

PG = A
(

1 − |PM|k
)

. (16)

Fig. 1 shows the discrete goodness-of-fit values against the mis-

fit values for A = 10 and k = 1 what we consider a practically
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Figure 1. Discrete goodness-of-fit values against the misfit values.

reasonable choice for a wide class of problems. Fig. 1 also includes

an example of a possible verbal evaluation of fit. The fourth column

of the table assigns four verbal degrees or levels to the goodness-

of-fit numerical values. This example of the relatively robust verbal

evaluation is taken from the paper of Anderson (2004).

Anderson’s goodness-of-fit criteria are based on characteristics

relevant in the earthquake-engineering applications. He split the in-

vestigated frequency range into relatively narrow frequency subin-

tervals. Then he compared seismograms that had been narrow-band-

pass filtered for a given subinterval. He evaluated goodness-of-fit

criteria defined for the peak acceleration, peak velocity, peak dis-

placement, Arias intensity, the integral of velocity squared, Fourier

spectrum and acceleration response spectrum on a frequency-by-

frequency basis, the shape of the normalized integrals of accelera-

tion and velocity squared, and the cross correlation. Each charac-

teristic was compared on a scale from 0 to 10, with 10 meaning

agreement. Scores for each parameter were averaged to yield an

overall quality of fit. Based on the systematic comparison of the

horizontal components of recorded earthquake motions Anderson

(2004) introduced the following verbal scale for goodness-of-fit: A

score below 4 is a poor fit, a score of 4–6 is a fair fit, a score of 6–8

is a good fit, and a score over 8 is an excellent fit.

We think that the example of the TF misfits, TF goodness-of-fits

and verbal levels given in Fig. 1 can be reasonably applied to an

analysis of earthquake records and simulations and possibly also to

some other problems.

We should stress, however, that the choice of the mapping be-

tween the TF misfits and TF goodness-of-fits (in our case the choice

of the range of the goodness-of-fit criteria 〈0, A〉 and exponent k),

and the choice of the verbal classification should be adjusted to the

problem under investigation and should be based on the numeri-

cal experience. In other words, the choice should reflect a relevant

aspect of the comparative analysis or the capability of a particular

theory to model a real process.

We think that the concept of the TF misfits makes it possible

to define proper goodness-of-fits and eventually also the verbal

classification for the final/overall robust evaluation/comparison of

signals.

6 N U M E R I C A L E X A M P L E S

Kristekova et al. (2006) showed detailed numerical examples of

the TF misfits for signals that were relatively close. The choice of

the close signals allowed demonstrating the capability of the TF

misfits not only to quantify differences between the signals but

also to characterize the origin or nature of the differences (e.g.

pure amplitude modification, pure phase modification, translation

in time, frequency shift).

Here we focus on very different situations. In the first example,

we compare composed dispersive signals. In the second example,

we compare signals, which differ considerably—a recorded signal

with a synthetic (numerically modelled) signal.

6.1 Dispersive signals

Dispersive signals are important and common because they are

due to the wave interference. Dispersive signals provide a good

opportunity to illustrate interesting features of the TF phase misfit.

Consider an example of a simple dispersive signal, u0(x , t),

u0 (x, t) =
2π/5
∫

2π/50

cos

[

ω t −
ω x

c0 (ω)

]

dω; c0 (ω) = 4 − ω − ω2.

(17)

Here, x is a spatial coordinate, t is time. A slight modification of

the frequency dependence of the phase velocity in the signal (17)

gives a modified signal u0m(x , t),

u0m (x, t) =
2π/5
∫

2π/50

cos

[

ω t −
ω x

c0m (ω)

]

dω;

c0m (ω) = 3.91 − 0.87ω − 0.8ω2. (18)

Both signals for x = 1500 km are shown in Fig. 2 (top panel),

u0(x, t) in red, u0m(x , t) in black. Consider also a dispersive signal

u1(x, t),

u1 (x, t) = 0.8
2π/3
∫

2π/15

cos
[

ω t − ω x

c1(ω)

]

dω;

c1 (ω) = 5.5 − 0.7ω − 0.3ω2, (19)

that could be considered as the first higher mode to u0(x , t) and

u0m(x , t); in this sense and for the purpose of further analysis let

us called u0(x , t) and u0m(x , t) fundamental modes, and u1(x , t)

the first higher mode. The signal for x = 1500 km is shown in

Fig. 2 (middle panel), in blue.

We can now define two composed dispersive signals

ur (t) = u0(1500, t) + u1(1500, t),

u(t) = u0m(1500, t) + u1(1500, t).
(20)

Both signals are superpositions of the fundamental mode and first

higher mode. The signals differ in the fundamental mode but they

share the same first higher mode. The signals are shown in Fig. 2

(bottom panel)—ur(t) in red, u(t) in black. The TF representations

of the both composed signals are shown in Fig. 3. It is obvious from

the TF representations that each of the two signals comprises two

modes. It is also obvious that these two modes cannot be separated

(without knowing their definition formulas) only in the time domain

or only in the frequency domain because the modes overlap in

both domains. The TF representation is necessary to recognize the

structure of each of the composed signals.

The TF representations themselves, however, are not enough for

comparing the two composed signals. A simple visual comparison

of the TF representations of ur(t) and u(t) only partly allows us

to recognize but does not allow us to quantify differences between
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Goodness-of-Fit
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± 0.00 ± 0.0 10

± 0.11 ± 0.1 9 excellent

± 0.22 ± 0.2 8

± 0.36 ± 0.3 7 good

± 0.51 ± 0.4 6

± 0.69 ± 0.5 5 fair

± 0.92 ± 0.6 4

± 1.20 ± 0.7 3

± 1.61 ± 0.8 2

± 2.30 ± 0.9 1

poor

± � ± 1.0 0
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Figure 2. Top panel: dispersive signals u0(x, t), in red, and u0m(x, t), in black. Middle panel: dispersive signal u1(x, t) considered as the first higher mode with

respect to signals u0 and u0m. Bottom panel: composed dispersive signals ur (x , t) = u0(x , t) + u1(x , t), in red, and u(x , t) = u0m (x , t) + u1(x , t), in black. All

signals are displayed for x = 1500.

Figure 3. TF representations of the composed dispersive signals ur (x , t) = u0(x , t) + u1(x , t), in red, and u(x , t) = u0m (x , t) + u1(x , t), in black. The signals

are displayed for x = 1500.

the signals. The TF misfit criteria provide a reasonable tool for the

quantitative comparison. The globally normalized TF misfits are

displayed in Fig. 4. Both the TF envelope and phase misfits clearly

show that ur(t) and u(t) differ only in the fundamental modes—there

is no misfit in the TF region corresponding to the first higher mode

u1(t).

TF envelope misfit TFEMREF
GLOB (t , f ) and both the time- and

frequency-dependent envelope misfits TEMREF
GLOB (t) and FEMREF

GLOB
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Figure 4. Globally normalized TF misfits between the composed dispersive signals ur(1500, t), taken as reference, and u(1500, t): TFEM and TFPM – TF

envelope and phase misfits, TEM and TPM – time-dependent envelope and phase misfits, FEM and FPM – frequency-dependent envelope and phase misfits.

( f ) show typical signatures of the differences between signals

caused by frequency shift; compare with the simplest canonical

situations in Kristekova et al. (2006). These typical signatures of

the frequency shift include maxima with an alternating sign along

the frequency axis in both the TF and frequency-dependent envelope

misfits, and also significantly lower values of the time-dependent

envelope misfit.

We can clearly recognize distinct features of the TF phase misfit

TFPMREF
GLOB (t , f ): a. The zero misfit (white colour) shows where

ur(t) and u(t) are in phase. b. The positive misfits (warm colours)

show where u(t) is phase-advanced with respect to ur(t). c. The neg-

ative misfits (cold colours) show where u(t) is phase-delayed with

respect to ur(t). d. Lines of the discontinuous misfit-sign change

(sudden colour change) delineate sudden (discontinuous) change of

the phase difference between ur(t) and u(t) from π to −π , if we

look in the positive direction along the time axis. Along the lines

the signals are in antiphase. Note that whereas the phase difference

between ur(t) and u(t) jumps from π to −π , the TF misfits values

from both sides of the discontinuity may be smaller in absolute

value than 100 per cent. There is no contradiction in this. This is

just a simple consequence of the fact that the displayed misfits are

globally normalized. Times of the occurrence of the phase jumps

in the phase differences between the signals (when the signals are

in antiphase) can be clearly identified also from the time-dependent

phase misfit TEMREF
GLOB(t) as the times of a sudden change of the

sign of the misfit values. Again, due to the global normalization,

the TPMREF
GLOB(t) misfit values from both sides of the discontinuity

may be smaller in absolute value than 100 per cent.

6.2 Recorded and numerically modelled earthquake

motion

The observed three-component signal represents the ground motion

recorded during a local small earthquake at the temporary seismic

station in the Mygdonian basin near Thessaloniki, Greece. The com-

puted three-component signal represents the numerically simulated

motion for the preliminary structural model of the Mygdonian basin

(Manakou et al. 2004). Both the recorded and computed signals are

shown in Fig. 5. The relatively large differences between the ob-

served and numerically simulated signals might mainly be due to

the considerably simplified velocity model of the basin sediments.

The observed signal is taken as a reference.

We present and discuss here locally and globally normalized TF

representations of the signals, locally and globally normalized

TF envelope and phase misfits, and locally and globally normal-

ized TF envelope and phase goodness-of-fit criteria.

6.2.1 Locally normalized TF representations

The top panel of Fig. 6 shows three components of the recorded

signal (red) and computed signal (black) together with their TF

representations, that is W 2(t, f ). The TF representation of each

C© 2009 The Authors, GJI, 178, 813–825
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Figure 5. Recorded and computed three-component particle-velocity signals at the temporary seismic stations in the Mygdonian basin. N – north–south

component, E – east–west component, Z – vertical component.

component is normalized with respect to the maximum W 2(t, f )

value for that component and then represented using the same log-

arithmic red-colour or grey scale covering the range of three orders

of magnitude. The combination of the local normalization with the

logarithmic scale enables us to see very well the detailed distribu-

tion of the signal energy larger than 0.1 per cent of the maximum. It

is obvious that a direct visual comparison can neither quantify nor

properly characterize differences between the TF representations of

the signals.

6.2.2 Globally normalized TF representations

The top panel of Fig. 7 shows three components of the recorded

signal (red) and computed signal (black) together with their TF rep-

resentations, that is W 2(t, f ). The TF representation of each com-

ponent is normalized with respect to the maximum W 2(t, f ) value

from all three components; the same linear red-colour or grey scale

is then applied to each normalized component. The combination of

the global normalization with the linear scale shows very well the

TF structure (pattern) of each component relative to the maximum

W 2(t, f ) value, that is the energetically dominant TF contents of

the signal. Although a bit easier than with the locally normalized

TF representations, still a direct visual comparison provides nei-

ther quantification nor a proper characterization of the differences

between the TF structures of the observed and computed signals.

6.2.3 Locally normalized TF misfit criteria

The middle panel of Fig. 6 displays the detailed anatomy of the

TF envelope and phase misfits between corresponding components

of the observed and computed signals in the entire considered TF

range.

Due to relatively very large envelope-misfit values, all values

above 200 per cent are shown in the same colour (magenta),

that is, they are clipped at 200 per cent. Similarly, values below

−200 per cent are shown using one colour (light green). Although

the TF structure of the envelope misfits remains relatively com-

plicated the TF envelope misfits show where the envelope of the

computed signal is larger and where it is smaller compared to that

of the observed signal. Because the misfits are locally normalized,

they can attain very large values also at those (t, f ) points or parts

of the signal, where the envelope itself is relatively very small or

negligible compared to the maximum envelope value (that is, where

the energy of the signal is very small or negligible). It is just this

feature of the locally normalized misfits that makes their interpre-

tation relatively difficult. Therefore, when interpreting the misfits,

one should always look also at the TF representations of the signals

themselves.

The phase misfits show where the phase of the computed signal is

advanced and where it is delayed compared to that of the observed

signal. Note, however, that due to the complexity of the signals

and nature of the phase misfit its TF structure is more complicated

and consequently its interpretation more difficult than those of the

envelope misfit.

6.2.4 Globally normalized TF misfit criteria

The globally normalized TF misfit criteria are shown in the middle

panel of Fig. 7. The envelope/phase misfits clearly reflect those TF

parts of the signals where the envelopes/phases differ and at least

one of the signals is energetically significant. In other words, the

globally normalized TF misfits account for both the envelope/phase

difference at a (t, f ) point and the significance of the envelope at that

point with respect to the maximum envelope of the reference signal.

Looking at the middle panel of Fig. 7 we can quite well ‘sense’ an

overall level of disagreement between the compared signals.

6.2.5 Locally normalized TF goodness-of-fit criteria

The bottom panel of Fig. 6 shows the locally normalized TF enve-

lope and phase goodness-of-fits. Although only four distinct colours

were used and assigned to intervals of the goodness-of-fit values,

the patterns of the TF envelope and phase goodness-of-fits are com-

parable with those of the clipped locally normalized TF misfits, that

is, they are comparably complicated (note that not clipped misfits

would be obviously even more complicated). This is due to the local

normalization in both cases. It is clear that the local normalization
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Figure 6. Top panel: three components of the recorded signal (red) and computed signal (black) together with their TF representations. The TF representation

of each component is normalized with respect to the maximum W 2 (t, f ) value for that component. Middle panel: Locally normalized TF envelope (TFEM)

and phase (TFPM) misfits between corresponding components of the observed and computed signals. The envelope-misfit values above 200 per cent are shown

in magenta, values below −200 per cent are shown in light green. Bottom panel: locally normalized TF envelope and phase goodness-of-fits.

makes the interpretation of the TF misfits and goodness-of-fits rela-

tively difficult if the signals themselves are not simple. At the same

time this relative complexity is unavoidable if the analysis requires

seeing details of the difference, for example, related to specific part

of the signals.

6.2.6 Globally normalized TF goodness-of-fit criteria

The bottom panel of Fig. 7 shows the globally normalized TF en-

velope and phase goodness-of-fits. Compared to all the preceding

misfits and goodness-of-fits they provide the simplest and most ro-

bust tool for visualizing where in the TF plane the amplitudes and

phases of the compared signals differ and where they do not. This

is because they are goodness-of fits, they are globally normalized,

and they are displayed using distinct colours assigned to only four

intervals of the goodness-of-fit values. Recall that the four colours

represent, in fact, the simple verbal evaluation of the level of agree-

ment given (as an example) in Fig. 1.

Based on the chosen globally normalized goodness-of-fits we can

say that the level of the overall agreement in the Z-component is fair
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Figure 7. Top panel: Three components of the recorded signal (red) and computed signal (black) together with their TF representations. The TF representation

of each component is normalized with respect to the maximum W 2 (t, f ) value from all three components. Middle panel: Globally normalized TF envelope

(TFEM) and phase (TFPM) misfits between corresponding components of the observed and computed signals. Bottom panel: Globally normalized TF envelope

and phase goodness-of-fits.

in envelopes and good in phases. The level of the overall agreement

in the horizontal components is poor in envelopes and fair-to-good

in phases. The difference between the overall agreement in the

Z-component and horizontal components is due to the presence of

the wave group at lower frequencies and later times in the horizontal

components, which is not present in the Z-component. The wave

group is distinct in the numerically simulated motion. We can just

note that its presence is likely due to the considerably simplified

velocity structure of the basin sediments used in the computational

model.

7 C O N C LU S I O N S

We presented a systematic extension and elaboration of the concept

of the TF misfit criteria originally introduced by Kristekova et al.

(2006), Kristekova et al. (2006) used the TF representation of signals
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to define envelope and phase differences at a point of the TF plane,

and the corresponding TF envelope and phase misfit criteria. They

defined and numerically tested globally normalized criteria for one-

component signals assuming that one of the compared signals can

be considered a reference. The locally normalized criteria were

defined but not tested and analysed.

The extension presented in this paper can be summarized as

follows. We found more proper definition of the phase difference

at a point of the TF plane. We defined TF misfit criteria for three-

component signals. We distinguished two basic situations: 1. It is

reasonable and possible to consider one of the compared signals

a reference. 2. There is no reason, pertinent or attributable to the

investigated problem, to choose one signal a reference. We also

treated two principal normalizations of the misfits—local and global

normalizations—in a unified way.

The values of the locally normalized misfit criteria for one

(t, f ) point depend only on the characteristics at that point. The

locally normalized misfit criteria should be used if it is important

to investigate the following.

(1) Relatively small parts of the signal (e.g. wave groups, pulses,

transients, spikes, so-called seismic phases), no matter how large

amplitudes of those parts are with respect to the maximum ampli-

tude of the signal.

(2) A detailed TF anatomy of the disagreement between signals

in the entire considered TF region.

The globally normalized misfit criteria give the largest weights to

the local envelope/phase differences for those parts of the reference

signal (true or formally algorithmically determined) in which the

envelope reaches the largest values. The globally normalized misfit

criteria should be used if it is reasonable

(1) to quantify an overall level of disagreement,

(2) to account for both the envelope/phase difference at a (t, f )

point and the significance of the envelope at that point with respect

to the maximum envelope of the reference signal, for example, in

the earthquake ground motion analyses and earthquake engineering.

We also introduced the TF envelope and phase goodness-of-fit

criteria derived from the TF misfit criteria. Thus the TF goodness-

of-fit criteria are based on the complete signal representation and

have the same TF structure as the TF misfits. They are suitable for

comparing arbitrary time signals in their entire TF complexity.

The TF goodness-of-fit criteria quantify the level of agreement

and are most suitable in the case of larger differences between the

signals. They can be used when we look for the agreement rather

than details of disagreement. The robust ‘verbal quantification’ en-

ables us to see/find out the ‘essential’ level of agreement between

the compared signals.

We numerically demonstrated the capability and important fea-

tures of the TF misfit and goodness-of-fit criteria in two method-

ologically important examples.

Program package TF_MISFIT_GOF_CRITERIA (Kristekova

et al. 2008a) is available at http://www.nuquake.eu/Computer

Codes/.
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