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Misfit Criteria for Quantitative Comparison of Seismograms

by Miriam Kristeková, Jozef Kristek, Peter Moczo, and Steven M. Day

Abstract We have developed and numerically tested quantitative misfit criteria
for comparison of seismograms. The misfit criteria are based on the time-frequency
representation of the seismograms obtained as the continuous wavelet transform with
the analyzing Morlet wavelet. The misfit criteria include time-frequency envelope
and phase misfits, time-dependent envelope and phase misfits, frequency-dependent
envelope and phase misfits, and single-valued envelope and phase misfits.

We tested properties of the misfit criteria using canonical signals. The canonical
signals, taken as the reference signals, were specifically amplitude, phase shift, time
shift, and frequency modified to demonstrate the ability of the misfit criteria to prop-
erly quantify the misfits and recognize the character and cause of the misfits between
the reference and modified signals. In all cases the misfit criteria properly quantified
and characterized the misfits.

The misfit criteria were also calculated for four different numerical solutions for
a single layer over half-space (the SCEC LOH.3 problem) and the reference FK so-
lution. The misfit criteria provided useful insight into the misfits between individual
numerical solutions and the reference solution.

The standard RMS misfit matches the single-valued envelope misfit only in the
case of a pure amplitude modification of the signal. In all other cases RMS consid-
erably overestimates the misfits and does not characterize them.

Introduction

It often is useful or necessary to compare seismo-
grams—for example, the seismogram calculated by a tested
method against a reference solution (which is exact or in-
dependent) or a synthetic against a real record. In many ar-
ticles two seismograms are simply displayed together. Al-
though the simple visual comparison of two seismograms
can be useful in some cases, it is obvious that it cannot pro-
vide proper quantification and characterization of the differ-
ence between the seismograms.

In some articles (e.g., Aoi and Fujiwara, 1999) the misfit
of two seismograms is shown by using a difference seis-
mogram defined as

D(t) � s(t) � s (t), (1)REF

where s(t) is the tested seismogram, sREF (t) is the reference
seismogram, and t is time. Though D(t) shows a time-
dependent difference between two seismograms, it is clear
that it can provide very misleading information. The simplest
example is a pure time shift of two identical signals—D(t)
can be very large without any indication of the reason for,
and character of, the difference.

Sometimes it is necessary to investigate and show de-
pendence of the misfit between two solutions on some im-
portant parameter(s) as, for example, epicentral distance,

Poisson’s ratio, grid spacing, timestep. In such cases it is
reasonable to characterize the misfit by a proper single-
valued integral quantity. A simple integral criterion, say,
misfit MD, corresponding to the difference seismogram D(t)
may be defined as

s(t) � s (t)� �� REF
t

MD � (2).
s (t)� �� REF

t

A more commonly used misfit criterion (e.g., Geller and
Takeuchi, 1995) is the RMS (root mean square) misfit defined
as

2s(t) � s (t)� �� REF
t

RMS � . (3)
2� s (t)� �� REF

t

It is clear from the three preceding definitions that D(t), MD,
and RMS quantify a difference between two seismograms
without having the property of recognizing what causes the
difference. In other words, they are unable to properly char-
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acterize it. Still the question is whether they can really prop-
erly quantify it. Kristek et al. (2002) used single-valued (in-
tegral) envelope and phase misfits based on the envelope and
phase of the analytical signal. The criteria are applicable if
the signals to be compared are sufficiently simple.

Considering some time signal as a reference, it is clear
that some modifications of the signal can be more visible
and understandable in the time domain, some in the fre-
quency domain. Some modifications can change only/
mainly amplitudes or envelope, some others can change
only/mainly phase. At the same time, the most complete and
informative characterization of a signal can be obtained by
its decomposition in the time-frequency plane, that is, by its
time-frequency representation (TFR). The TFR enables us to
see the time evolution of the spectral content. Therefore, it
seems quite natural to define misfit criteria based on the TFR,
that is, time-frequency dependent criteria. From the time-
frequency signal or misfit representation it is then easy to
obtain time- or frequency-dependent quantities by projecting
the TFR onto either of two domains. It is also possible to
naturally define single-valued quantities based on the TFR.

The importance of having reasonable misfit criteria has
recently been underlined by the SCEC (Southern California
Earthquake Center) and SPICE (Seismic wave Propagation
and Imaging in Complex media: a European network) code
validation projects (e.g., Day et al., 2003; Moczo et al.,
2005; Igel et al., 2005). In particular, the goal of the SPICE
Code Validation is to create a long-term, interactive web-
based platform for detailed comparison and testing methods
and computer codes for the numerical modeling of seismic-
wave propagation and earthquake motion.

Time-Frequency Misfit Criteria

The continuous wavelet transform (CWT) of signal s(t)
is defined by

�

1 t � b
CWT {s(t)} � s(t) w* dt , (4)(a,b) � � �a|a|� ��

where t is time, a is the scale parameter, b is the translational
parameter, and w is the analyzing wavelet. The scale param-
eter a is inversely proportional to frequency f. Consider an
analyzing wavelet with a spectrum that has zero amplitudes
at negative frequencies. Such a wavelet is an analytical sig-
nal and is called the progressive wavelet. The Morlet wave-
let,

�1/4 2w(t) � p exp(ix t) exp(�t /2), (5)0

with the parameter x0 � 6 is an example. With a relation
f � x0/2pa between the scale parameter a and frequency f,
the TFR of signal s(t) can be defined as

W(t, f ) � CWT {s(t)}; a � x /2pf, b � t. (6)(a,b) 0

Let WREF(t, f) be the TFR of the reference signal sREF(t), W(t,
f) be the TFR of signal s(t), and NT and NF be the numbers
of time and frequency samples in the time-frequency (TF)
plane, respectively. (For the continuous wavelet transform
and Morlet wavelet see, e.g., Daubechies, 1992; Holschnei-
der, 1995.)

We define a local TF envelope difference,

DE (t, f ) � ⎪W (t, f )⎪ � ⎪W (t, f )⎪, (7)REF

and a local TF phase difference,

DP (t, f )
{Arg[W (t, f )] � Arg [W (t, f )]}REF

� ⎪W (t, f )⎪ .REF
p

(8)

Having the local TF envelope and phase differences, we can
define envelope and phase misfits dependent on both time
and frequency: time-frequency envelope misfit (TFEM)

DE (t, f )
TFEM (t, f ) � , (9)

max ( W (t, f ) )⎪ ⎪t, f REF

time-frequency phase misfit (TFPM)

DP (t, f )
TFPM (t, f ) � , (10)

max ( W (t, f ) )⎪ ⎪t, f REF

TFEM (t, f) characterizes the difference between the enve-
lopes of the two signals as a function of time and frequency.
Analogously, the TFPM (t, f) characterizes the difference be-
tween the phases of the two signals as a function of time and
frequency. Both differences are normalized with respect to
the maximum absolute TFR value of the reference signal.

Assume, for example, a multiplication of the entire sig-
nal by 1.05, that is, the same 5% relative modification of the
signal amplitude at each time of the signal. It follows from
definition (9) that TFEM (t, f) will not be constant along the
time axis because the same relative change does not mean
the same value of the envelope difference (7). The latter also
depends on the absolute value of the local amplitude.

Assume, for example, change of the signal’s phase by
5%. Though the change applies to the entire signal, TFPM
(t, f) will not be constant along the time axis. This is because
the definition of the phase difference (8) also includes |WREF

(t, f)|, that is, the local absolute TFR value of the reference
signal.

These two features are clearly demonstrated in the nu-
merical examples.

In some cases it may be useful to see the misfit between
two signals as a function of (only) time. Such a misfit can
be naturally defined as a projection of the TF misfit onto the
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time domain. Thus, the time-dependent misfits are defined
as follows: time-dependent envelope misfit (TEM)

�DE (t, f )� fTEM (t) � , (11)
max (� W (t, f ) � )⎪ ⎪t REF f

time-dependent phase misfit (TPM)

�DP (t, f )� fTPM (t) � , (12)
max (� W (t, f ) � )⎪ ⎪t REF f

where

1
�H(t, f )� � H(t, f ), (13)f �N fF

with H representing either of DE, DP, |WREF|.
Analogously, in some cases it may be useful to see the

misfit between two signals as a function of (only) frequency.
Such a misfit can be naturally defined as a projection of
the TF misfit onto the frequency domain. The frequency-
dependent misfits are defined as follows: frequency-
dependent envelope misfit (FEM)

�DE (t, f )�tFEM ( f ) � , (14)
max (� W (t, f ) � )⎪ ⎪f REF t

frequency-dependent phase misfit (FPM)

�DP (t, f )�tFPM ( f ) � , (15)
max (� W (t, f ) � )⎪ ⎪f REF t

where

1
�H(t, f )� � H(t, f ) , (16)t �N tT

with H representing either of DE, DP, |WREF|.
In addition to the preceding time-frequency, time, and

frequency misfit criteria, it is also reasonable to have a sin-
gle-valued measure of the envelope or phase misfit between
two compared signals. The single-valued (say, integral) en-
velope misfit can be defined as

2⎪DE(t, f )⎪��
f t .EM � (17)

2⎪W (t, f )⎪��� REF
f t

Similarly, single-valued phase misfit will be

2⎪DP(t, f )⎪��
f t .PM � (18)

2⎪W (t, f )⎪��� REF
f t

As already pointed out, TFEM (t, f) and TFPM (t, f) are
normalized with respect to the maximum absolute TFR value
of the reference signal. Consequently, the time-dependent
and frequency-dependent criteria also are scaled with respect
to the corresponding maxima. In principle, we could define
all criteria normalized with respect to the local (t, f), (t), or
(f) values. Some reasons for the adopted normalization are:
(1) If one part of the seismogram reaches some values and
the rest of seismograms one or more order smaller values,
then, in most applications, it is much more important to see
the meaningful misfits instead of the entire detailed anatomy
of difference between two signals (e.g., the same local level
of misfit due to some uniform amplitude or phase modifi-
cation no matter how large the local values of the signals
are). (2) In the comparison of three-component seismograms
with two nonzero components and one component with one
or more orders smaller values, the global normalization de-
fined with respect to maximum from all three components
is the only reasonable one for comparison of the two seis-
mograms. (3) Except of the simplest signals and modifica-
tions, the locally normalized criteria are almost “unreadable”
or difficult to interpret. (4) For the smallest values of |W|,
the local normalization leads to numerical division of two
very small values and this may cause numerical problems.

In some specific problems, one can be interested in see-
ing detailed structure of misfits without “recognizing” sig-
nificant and insignificant amplitudes of seismograms. In
such a case the locally normalized criteria can be used—
though with possible problems labeled 3 and 4 previously.
The locally normalized criteria are listed in the Appendix.

Because some authors use the RMS misfit defined by
equation (3) to quantify the difference between two seis-
mograms, we will also calculate this misfit in the numerical
tests.

Note that the wavelet transform was used for compari-
son of seismograms by Ji et al. (1999) in their finite-fault
inversion. Ji et al. (1999) used a single-valued criterion
based on differences of wavelet coefficients calculated for
the observed and synthetic seismograms. In other words,
they compared seismograms in the wavelet domain.

Testing Signals

We consider three signals for testing the previously de-
fined misfit criteria. Signal S1 is defined by

S1 � A (t � t )exp[�2(t � t )] •1 1 1

cos[2pf (t � t ) � u p] • H(t � t ) . (19)1 1 1 1

Signal S2 is defined by
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Figure 1. The reference signals S1, S2, and S1 � S2 and their Fourier power spectra.

Figure 2. TFR of the reference signals S1, S2, S1
� S2 obtained as the modulus of the CWT of the
signals.

2S2 � A exp[�2(t � t ) ] •2 2

cos[2p f (t � t ) � u p] . (20)2 2 2

Here, H(t) means the Heaviside step function. A superpo-
sition of the two signals, S1 � S2, defines the third signal.
In the numerical calculations, the following values of param-
eters were used: A1 � 4, t1 � 2 sec, f1 � 2 Hz, u1 � 0, A2

� 1, t2 � 3.5 sec, f2 � 3 Hz, u2 � 0.
S1 is a harmonic carrier with a sudden onset and decay-

ing amplitude. Its amplitude spectrum has a peak at 2 Hz.
S2 is Gabor signal, that is, a harmonic carrier with a Gaus-
sian envelope. Its amplitude spectrum, with a peak at 3 Hz,
is relatively narrow compared with that of signal S1. The
relatively broader spectrum of signal S1 is due to the sudden
amplitude onset of the beginning of the signal. The three
signals, S1, S2, and S1 � S2, as well as their spectra are
shown in Figure 1. The TFRs of the signals are shown in
Figure 2.

Amplitude and Phase Modifications of the Signals

To test the previously defined misfit criteria, we define
canonical modifications of the reference testing signals S1,
S2, and S1 � S2.



1840 M. Kristeková, J. Kristek, P. Moczo, and S. M. Day

Amplitude Modification

Let s(t) be the signal. The modified signal am05(s(t)) is
defined as

am05(s(t)) � 1.05 • s(t) . (21)

Similarly,

am10(s(t)) � 1.10 • s(t), am20(s(t)) � 1.20 • s(t) . (22)

These definitions mean that, for example, am05(S1) is the
modified signal obtained by the 5% amplification of the en-
tire signal S1.

Phase-Shift Modification

Let s(t) be the signal. Its analytical signal can be ex-
pressed as ŝ(t) � A(t) exp[iu(t)], with A(t) being the ampli-
tude and u(t) being the phase of the analytical signal. Then
the modified signal pm05(s(t)) is defined by

pm05(s(t)) � Re[A(t)exp(iu(t) � 0.05 i p)] . (23)

Similarly,

pm10(s(t)) � Re[A(t)exp(iu(t) � 0.10 i p)], (24)

pm20(s(t)) � Re[A(t)exp(iu(t) � 0.20 i p)].

These definitions of the phase-shift modification mean that,
for example, pm05(S1) is the modified signal obtained by
increasing the phase by 5% of p in signal S1.

Then, for example, TFEM-am05(S1 � S2) means the
TFEM between the reference S1 � S2 signal and the mod-
ified signal am05(S1 � S2). An other example is FPM-
am05(S1) � S2 that means the FPM between the reference
S1 � S2 signal and the modified signal am05(S1) � S2, in
which only the S1 component of the composed signal is
amplitude modified. Here we omitted the dependence of the
signals on time.

Misfits for the Amplitude-Modified Signals

We considered 5, 10, and 20% amplitude modifications
of signals S1, S2, and S1 � S2. We also considered 5, 10,
and 20% amplitude modifications of the S1 component in
the composed signal S1 � S2. Table 1 lists all the reference
and modified signals for which we calculated the misfit cri-
teria (9)–(15) and (17)–(18). The misfits between reference
signal S1 and the amplitude-modified signals am05(S1),
am10(S1), and am20(S1) are shown in Figure 3a. We can
see that the distribution of nonzero values of TFEM(t, f) in
the (t, f) plane corresponds to the distribution of nonzero
values of TFR of the reference signal. In other words, the
shape of the area with nonzero values of TFEM(t, f) in the
(t, f) plane corresponds to the shape of the area with nonzero

values of TFR of the reference signal. Moreover, the maxi-
mum value of the TFEM(t, f) exactly equals the percentage
of the amplitude modification for each of the three consid-
ered levels (5, 10, and 20%). Its position in the (t, f) plane
exactly corresponds to the position of the maximum value
of the TFR; this is correct because this is the position at
which the absolute amplitude difference between the refer-
ence and modified signal has the largest value. The state-
ments on the maximum value and its position are also true
for the time-dependent misfit TEM(t) and frequency-
dependent misfit FEM(f). The single-valued envelope misfit
EM also exactly equals the percentage of the amplitude mod-
ification for each of the three considered levels.

At the same time, the phase misfits TFPM(t, f), TPM(t),
FPM(f), and PM are all zero: the phase misfits correctly re-
flect the fact that there is no phase modification of the ref-
erence signal.

The RMS misfit exactly equals the single-valued enve-
lope misfit EM in all three levels of the amplitude modifi-
cation.

What we have said about the misfits for am05(S1),
am10(S1), and am20(S1) is also true in the misfits for
am05(S2), am10(S2), and am20(S2) (not shown here), and
misfits for am05(S1 � S2), am10(S1 � S2), and am20(S1
� S2). The misfits for the latter case are shown in Figure 3b.

Figure 3c shows the envelope and phase misfits between
the reference signal S1 � S2 and modified signals am05(S1)
� S2, am10(S1) � S2, and am20(S1) � S2. Note that only
the S1 component of the composed reference signal S1 �
S2 is amplitude modified. We can see in Figure 3c (and by
comparison with Fig. 2) that the shape of the area with non-
zero values of TFEM(t, f) in the (t, f) plane corresponds to
the shape of the area with nonzero values of TFR of the S1
component, which is correct. The maximum values of the
envelope misfits are proportional to the percentage of the
amplitude modification. The maximum values cannot be
equal to the percentage of the amplitude modification be-
cause the S1 component contributes to the TFR less than the
S2 component (see Fig. 2). Also note the alternating negative
and positive values of TFEM(t, f) along the contact of the
modified S1 and nonmodified S2, as well as nonzero values
of TFPM(t, f) along the contact. These are because the am-
plitude modification of only the S1 component changed both
the envelope and phase of the composed signal. The sign of
the envelope and phase differences alternates along the time
and frequency axes.

As in all the previous cases, the RMS misfit exactly
equals the single-valued envelope misfit EM in all three lev-
els of the amplitude modification.

Misfits for the Phase-Shift-Modified Signals

According to definitions (23) and (24) we considered 5,
10, and 20% phase-shift modifications of signals S1, S2, and
S1 � S2. We also considered 5, 10, and 20% phase-shift
modifications of the S1 component in the composed signal
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Table 1
Reference and Amplitude-Modified Signals Used for Calculation

of the Misfit Criteria

Reference Signals Amplitude-Modified Signals

S1 am05(S1) am10(S1) am20(S1)
S2 am05(S2) am10(S2) am20(S2)
S1 � S2 am05(S1 � S2) am10(S1 � S2) am20(S1 � S2)
S1 � S2 am05(S1) � S2 am10(S1) � S2 am20(S1) � S2

S1 � S2. Table 2 lists all the reference and modified signals
for which we calculated the misfit criteria (9)–(15) and (17)–
(18). The misfits between reference signal S1 and the phase-
shift-modified signals pm05(S1), pm10(S1), and pm20(S1)
are shown in Figure 4a. The shape of the area with nonzero
values of TFPM(t, f) in the (t, f) plane corresponds to the
shape of the area with nonzero values of TFR of the reference
signal. The maximum value of the TFPM(t, f) exactly equals
the percentage of the phase-shift modification for each of the
three considered levels (5, 10, and 20%). The position of the
maximum value in the (t, f) plane exactly corresponds to
the position of the maximum value of the TFR. The state-
ments on the maximum value and its position are also true
for the time-dependent misfit TPM(t) and frequency-depen-
dent misfit FPM(f). The single-valued phase misfit PM also
exactly equals the percentage of the phase-shift modification
for each of the three considered levels.

At the same time, the envelope misfits TFEM(t, f),
TEM(t), FEM(f), and EM are all zero: the envelope misfits
correctly reflect the fact that there is no amplitude modifi-
cation of the reference signal. Note that this is the symmetric
situation with respect to the phase misfits for the amplitude-
modified signals in the previous section.

The RMS misfit is approximately three times larger than
the single-valued phase misfit PM in all three levels of the
phase-shift modification. This means that RMS approxi-
mately three times overestimates the level of the phase-shift
modification. This obviously is due to the definition of the
RMS misfit, which can only sense local difference between
two signals no matter what is the cause of the differences.

What we have said about the misfits for pm05(S1),
pm10(S1), and pm20(S1) is also true in the case of the misfits
for pm05(S2), pm10(S2), and pm20(S2) (not shown here), and
misfits for pm05(S1 � S2), pm10(S1 � S2), and pm20(S1
� S2). The misfits for the latter case are shown in Figure 4b.

Figure 4c shows the envelope and phase misfits between
the reference signal S1 � S2 and modified signals pm05(S1)
� S2, pm10(S1) � S2, and pm20(S1) � S2. In the modified
signals only the S1 component of the composed reference
signal S1 � S2 is phase shift modified. The shape of the
area with nonzero values of TFPM(t, f) in the (t, f) plane
corresponds to the shape of the area with nonzero values of
TFR of the S1 component (see Fig. 2), which is correct. The
maximum values of the phase misfits TFPM(t, f), TPM(t),
FPM(f), and PM are proportional to the percentage of the
phase-shift modification. The maximum values are not equal

to the percentage of the phase-shift modification because the
S1 component contributes to the TFR less than the S2 com-
ponent (see Fig. 2).

Both TFPM(t, f) and TFEM(t, f) show alternating nega-
tive and positive values along the contact of the modified S1
and nonmodified S2. This is because the phase-shift modi-
fication of only the S1 component changed both the envelope
and phase of the composed signal. The sign of the envelope
and phase differences alternates along the time and fre-
quency axes. Compared with the nonzero alternating values
of TFPM(t, f) in the case of the amplitude modification of
only the S1 component (the previous section), the absolute
values of the alternating-sign misfits are larger here because
the relative change of the envelope due to phase-shift mod-
ification here is larger than the relative change of the phase
due to amplitude modification in the former case (the pre-
vious section).

As in the previous examples of the phase-shift-modified
signals, the RMS misfit is approximately three times larger
than the single-valued phase misfit PM in all three levels of
the phase-shift modification. This obviously is not affected by
the nonzero values of the single-valued envelope misfit EM.

Examples of the Time-Shift and Frequency
Modifications and the Corresponding Misfits

To additionally illustrate the capability of the defined
misfit criteria to quantify differences between a reference
and some other signal, we also considered time-shift and
frequency modifications of the reference signal.

We calculated the misfits between the reference signals
and signals obtained by simple shifting along the time axis.
For example, tm1/120(S1) means the same signal as the ref-
erence one but delayed in time by 1/120 sec. Table 3 lists
all modifications for which the misfits were calculated. The
misfits between reference signal S1 and the time-shift-
modified signals tm1/120(S1), tm1/60(S1), and tm1/30(S1)
are shown in Figure 5a. The time shift causes mainly a
change of the phase but also a change of the envelope with
respect to the reference signal. As expected, the absolute
values of the phase misfits are clearly larger than those of
the envelope misfits. The shape of the area with nonzero
values of TFPM(t, f) in the (t, f) plane corresponds to the
shape of the area with nonzero values of TFR of the reference
signal. The maximum values of the envelope and phase mis-
fits are directly proportional to the level of the time shift. At
each frequency, the constant time delay of the entire signal
causes a relative negative difference of the envelope to the
left (along the time axis) of the signal’s center and a relative
positive difference of the envelope to the right of the signal’s
center. At each frequency, the projections of the negative
and positive TFEM(t, f) values cancel each other and result
in zero FEM(f), which is correct.

The RMS misfit is approximately three times larger than
the single-valued phase misfit PM in all three levels of the
time shift. Simple visual comparison of the reference and
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Figure 3. (a) Misfits between the reference signal S1 and modified signals am05(S1),
am10(S1), and am20(S1) (Middle) Reference and amplitude-modified signals, values of the
single-valued envelope misfit EM, phase misfit PM, and RMS misfit. (Top) Time-frequency
envelope misfits TFEM(t, f), time envelope misfits TEM (t), and frequency envelope misfits
FEM (f). (Bottom) Time-frequency phase misfits TFPM (t, f), time phase misfits TPM (t),
and frequency phase misfits FPM (f). (b) The same for S1 � S2 and modified signals
am05(S1 � S2), am10(S1 � S2), and am20(S1 � S2). (c) The same for S1 � S2 and
modified signals am05(S1) � S2, am10(S1) � S2, and am20(S1) � S2.
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Table 2
Reference and Phase-Shift-Modified Signals Used for Calculation

of the Misfit Criteria

Reference Signals Phase-Shift-Modified Signals

S1 pm05(S1) pm10(S1) pm20(S1)
S2 pm05(S2) pm10(S2) pm20(S2)
S1 � S2 pm05(S1 � S2) pm10(S1 � S2) pm20(S1 � S2)
S1 � S2 pm05(S1) � S2 pm10(S1) � S2 pm20(S1) � S2

modified signals in Figure 5a suggests that the RMS over-
estimates the level of the phase-shift modification.

We do not show here the misfits for tm1/120(S2), tm1/
60(S2), tm1/30(S2), tm1/120(S1 � S2), tm1/60(S1 � S2),
and tm1/30(S1 � S2). They would lead to the similar state-
ments.

Figure 5b shows the envelope and phase misfits between
the reference signal S1 � S2 and modified signals tm1/
120(S1) � S2, tm1/60(S1) � S2, and tm1/30(S1) � S2. In
the modified signals only the S1 component of the composed
reference signal S1 � S2 is delayed in time with respect to
the reference signal. The shape of the area with nonzero
values of TFPM(t, f) in the (t, f) plane corresponds to the
shape of the area with nonzero values of TFR of the S1 com-
ponent (see Fig. 2), which is correct. The maximum values
of the phase misfits TFPM(t, f), TPM(t), FPM(f), and PM are
proportional to the level of the time delay.

Both TFPM(t, f) and TFEM(t, f) show alternating nega-
tive and positive values along the contact of the modified S1
and nonmodified S2. This is because the time delay of only
the S1 component changed both the envelope and phase of
the composed signal. The sign of the envelope and phase
differences alternates along the time and frequency axes. The
absolute values of the alternating-sign TFEM(t, f) misfits are
larger than those of TFPM(t, f) here because the relative
change of the envelope due to time delay of only the S1
component of the signal here is larger than the relative
change of the phase (as simple visual comparison of the
reference and modified signals also suggests). Another con-
sequence of the latter fact is that single-valued envelope and
phase misfits, EM and PM, are approximately equal, which
is very different from the situation shown in Figure 5a.

As in the previous examples, the RMS misfit is approx-
imately three times larger than the single-valued phase misfit
PM in all three levels of modification.

In the last canonical example we show misfits between
the reference signal S1 and modified signals obtained by a
small change of the signal’s dominant frequency. Modified
signals fm 1.5(S1), fm3.0(S1), and fm6.0(S1) are obtained by
the 1.5, 3.0, and 6.0% increase of the dominant frequency f1
in definition (19), respectively. Figure 5c shows the refer-
ence and modified signals and the calculated misfits. As it
is obvious from Figure 5c, the increase of the dominant fre-
quency causes phase misfit in the time-frequency and time
and frequency domains. The maximum values of the phase
misfits are proportional to the level of the frequency modi-

fication. The position of the maximum TFPM(t, f) along the
frequency axis is determined by the dominant frequency.
The position of the maximum along the time axis is deter-
mined by two opposing factors: the larger local envelope
value is shifting the maximum to the left, whereas the larger
phase difference is shifting it to the right along the time axis.

It is easy to understand the patterns of the envelope
misfit. The increase of the signal’s dominant frequency
causes positive TFEM(t, f) and FEM(f) at frequencies larger
than the dominant frequency. At the same time it causes
negative TFEM(t, f) and FEM(f) at frequencies smaller than
the dominant frequency. The maximum values of the enve-
lope misfits are proportional to the level of the frequency
modification. Relatively small values of TEM(t) are caused
by relatively small change of the signal’s envelope in the
time domain, as suggested by simple visual comparison of
the reference and modified signals.

Again, the RMS values are approximately three times
larger than the PM values.

Application to the Numerical Solutions of the SCEC
LOH.3 Problem

The SCEC code validation project (Day et al., 2003)
compared 3D wave-propagation codes for a hierarchy of test
problems, ranging from simple point-source problems in ca-
nonical earth structures (e.g., layer over half-space) to prop-
agating ruptures in complex 3D representations of Los An-
geles Basin geology. Figure 6 shows the results for the layer
over half-space test with anelastic attenuation (Q is fre-
quency independent), with point-dislocation source (Gaus-
sian time function, spread 0.05 sec), Problem LOH.3. Three
solutions were calculated by the FD codes. They are labeled
as UCSB (Olsen, 1994), UCBL (Larsen and Grieger, 1998),
and WCC1 (Graves, 1996). CMUN is the FE solution (Bao et
al., 1998); FK the frequency-wavenumber solution using a
modification of the method of Apsel and Luco (1983). These
calculations were done with codes that were under ongoing
development, and the results were used to facilitate subse-
quent enhancements to some of the codes, especially with
respect to the treatment of anelastic attenuation. The wave-
forms analyzed here are therefore not representative of the
final performance of these methods, but rather are presented
as examples of how the proposed misfit measures can pro-
vide valuable assessment and guidance during the develop-

Table 3
Reference and Time-Shift-Modified Signals Used for Calculation

of the Misfit Criteria

Reference Signals Time-Shift-Modified Signals

S1 tm1/120(S1) tm1/60(S1) tm1/30(S1)
S2 tm1/120(S2) tm1/60(S2) tm1/30(S2)
S1 � S2 tm1/120(S1 � S2) tm1/60(S1 � S2) tm1/30(S1 � S2)
S1 � S2 tm1/120(S1) � S2 tm1/60(S1) � S2 tm1/30(S1) � S2
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Figure 4. (a) Misfits between the reference signal S1 and modified signals pm05(S1),
pm10(S1), and pm20(S1). (Middle) Reference and phase-shift-modified signals, values
of the single-valued envelope misfit EM, phase misfit PM, and RMS misfit. (Top) Time-
frequency envelope misfits TFEM (t, f), time envelope misfits TEM(t), and frequency enve-
lope misfits FEM(f). (Bottom) Time-frequency phase misfits TFPM(t, f), time phase misfits
TPM(t), and frequency phase misfits FPM(f). (b) The same for S1 � S2 and modified signals
pm05(S1 � S2), pm10(S1 � S2), and pm20(S1 � S2). (c) The same for S1 � S2 and
modified signals pm05(S1) � S2, pm10(S1) � S2, and pm20(S1) � S2.
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Figure 5. (a) Misfits between the reference signal S1 and modified signals tm1/
120(S1), tm1/60(S1), and tm1/30(S1). (Middle) Reference and time-shift-modified sig-
nals, values of the single-valued envelope misfit EM, phase misfit PM, and RMS misfit.
(Top) Time-frequency envelope misfits TFEM (t, f), time envelope misfits TEM (t), and
frequency envelope misfits FEM (f). (Bottom) Time-frequency phase misfits TFPM (t,
f), time phase misfits TPM (t), and frequency phase misfits FPM (f). (b) The same for
S1 � S2 and modified signals tm1/120(S1) � S2, tm1/60(S1) � S2, and tm1/30(S1)
� S2. (c) The same for S1 and modified signals fm1.5(S1), fm3.0(S1), and fm6.0(S1).
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UCSB solution, the envelope misfit becomes larger for
frequencies above 2 Hz, mainly at the radial and vertical
components.

The average (from the three components) EM and PM
values for the UCBL solution are 16% and 21%. The average
EM and PM values for the UCSB solution are 20% and 24%.
We do not evaluate RMS because the upper-frequency limit
in the test was set up as 5 Hz, and RMS would account for
the entire velocity seismograms which do have nonnegligi-
ble spectral content above 5 Hz.

Figure 8a shows the envelope and phase misfits between
the WCC1 and FK solutions, whereas Figure 8b shows the
misfits between the CMUN and FK solutions. Figure 8b
clearly shows that, overall, the CMUN solution gives the best
phases. At the same time, the WCC1 solution gives the best
phases for frequencies below 2 Hz and the worst phases for
frequencies above 3 Hz.

Overall, both the WCC1 and CMUN solutions give worse
envelopes than the UCBL and UCBS solutions do. The en-
velope misfits are negative for frequencies below 1 Hz and
positive for frequencies above 2 Hz. This agrees well with
the fact that both the WCC1 and CMUN incorporated a
simplified model of the attenuation (analogous to mass-
proportional Rayleigh damping; see, e.g., Graves, 1996)
which suppresses motion at lower frequencies and enhances
motion at higher frequencies.

ment process. For a detailed description and evaluation of
the numerical test for the LOH.3 problem see the report by
Day et al., (2003).

Here we focus on the formal quantification of the misfits
between the tested FD/FE solutions and reference FK solution
using the misfit criteria developed and tested previously. The
time-frequency misfits can provide a useful insight into the
differences between individual solutions and reference so-
lution. Seeing the structure of the misfits and their quanti-
fication will be useful also because, given the relative sim-
plicity of the problem (single layer over half-space), one can
find the scatter of solutions a somewhat surprising.

Figure 7a shows the envelope and phase misfits between
the UCBL and FK solutions, whereas Figure 7b shows the
misfits between the UCSB and FK solutions. Both the UCBL
and UCSB give reasonable phases at frequencies below 1 Hz,
mainly at the radial and transversal components. The phases
are not so good at frequencies above 2 Hz. Almost system-
atic negative phase misfits for UCBL and positive phase mis-
fits for UCSB can be noticed in the velocity seismograms
themselves. However, their quantification with respect to
time and frequency can be only seen in the calculated phase
misfits.

There is obvious envelope misfit for the two solutions
even for frequencies below 1 Hz. The envelope misfit for
UCBL becomes larger for frequencies above 3 Hz. For the

Figure 6. Synthetic velocity seismograms obtained by three FD codes (UCSB, UCBL,
and WCC1), one FE code (CMUN), and the frequency-wavenumber code (FK) for the
SCEC Problem LOH.3. The FK solution is taken as a reference. Columns show radial
(left), transverse (middle), and vertical (right) components, respectively, at distance of
10 km.
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Figure 7. (a) Misfits between the UCBL solution and reference FK solution. (Left)
Radial component. (Center) Transversal component. (Right) Vertical component. (Mid-
dle row) Reference and UCBL seismograms, values of the single-valued envelope
misfit EM and phase misfit PM. (Top) Time-frequency envelope misfits TFEM(t, f), time
envelope misfits TEM(t), and frequency envelope misfits FEM(f). (Bottom) Time-
frequency phase misfits TFPM(t, f), time phase misfits TPM(t), and frequency phase
misfits FPM(f). (b) The same for the UCSB solution.
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Figure 8. (a) Misfits between the WCC1 solution and reference FK solution. (Left)
radial component. (Center) Transversal component. (Right) Vertical component. (Mid-
dle row) Reference and WCC1 seismograms, values of the single-valued envelope
misfit EM and phase misfit PM. (Top) Time-frequency envelope misfits TFEM(t, f), time
envelope misfits TEM(t), and frequency envelope misfits FEM(f). (Bottom) Time-
frequency phase misfits TFPM(t, f), time phase misfits TPM(t), and frequency phase
misfits FPM(f). (b) The same for the CMUN solution.
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dominant frequency. In all cases the misfit criteria properly
quantified and characterized misfits between the reference
and modified signals.

Application to SCEC test problem LOH.3 (single layer
over half-space with attenuation) demonstrated that the
single-valued envelope and phase misfit criteria successfully
capture and quantify the principal visible discrepancies be-
tween the numerical solutions and the FK reference solution.
By putting phase and amplitude differences, respectively, on
a quantitative basis, the proposed single-valued misfit met-
rics provide a scheme for rating different numerical methods
according to their relative suitability for specific applica-
tions. Furthermore, the time-frequency-dependent, time-
dependent and frequency-dependent misfit functions provide
valuable additional descriptions of the discrepancies, to-
gether with insights into their origins. In particular, these
misfit functions clearly exhibit bandwidth limitations on
phase and amplitude accuracy, sign changes in the phase
misfits between different numerical solutions, and spectral
biases due to approximations to the constant-Q attenuation
operator, all of which can be traced to the characteristics of
the respective numerical solution methods.

In contrast, the standard RMS misfit matches the single-
valued envelope misfit (EM) only in the case of a pure am-
plitude modification of the signal. In all other cases, RMS
considerably overestimates misfits compared with EM and
PM. In contrast with RMS, the more precise and complete
characterization provided by EM and PM makes the latter
more effective for assessing the applicability of numerical
solution methods to specific applications. Suitability for
phase-sensitive applications such as surface-wave dispersion
or travel-time studies, for example, can be assessed by giv-
ing higher weight to PM than to EM, whereas suitability for
amplitude-sensitive applications such as strong-motion
simulation might be better assessed by giving higher weight
to EM than to PM.

The Fortran95 program package TF-MISFITS is avail-
able at www.nuquake.eu/Computer_Codes/.
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Appendix

Locally normalized time-frequency envelope misfit

DE (t, f )
TFEM (t, f ) � (A1)L W (t, f )⎪ ⎪REF

Locally normalized time-frequency phase misfit

DP (t, f )
TFPM (t, f ) � (A2)L W (t, f )⎪ ⎪REF

Locally normalized time-dependent envelope misfit

�DE (t, f )� fTEM (t) � (A3)L � W (t, f ) �⎪ ⎪REF f

Locally normalized time-dependent phase misfit

�DP (t, f )� fTPM (t) � (A4)L � W (t, f) �⎪ ⎪REF f

Locally normalized frequency-dependent envelope misfit

�DE (t, f )� tFEM ( f ) � (A5)L � W (t, f ) �⎪ ⎪REF t

Locally normalized frequency-dependent phase misfit

�DP (t, f )� tFPM ( f ) � (A6)L � W (t, f ) �⎪ ⎪REF t
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