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Seismic-Wave Propagation in Viscoelastic Media with Material

Discontinuities: A 3D Fourth-Order Staggered-Grid

Finite-Difference Modeling

by Jozef Kristek and Peter Moczo

Abstract We address the basic theoretical and algorithmic aspects of memory-
efficient implementation of realistic attenuation in the staggered-grid finite-difference
modeling of seismic-wave propagation in media with material discontinuities. We
show that if averaging is applied to viscoelastic moduli in the frequency domain, it
is possible to determine anelastic coefficients of the averaged medium representing
a material discontinuity. We define (1) the anelastic functions in a new way, as being
independent of anelastic coefficients, and (2) a new coarse spatial distribution of the
anelastic functions in order to properly account for material discontinuities and, at
the same time, to have it memory efficient. Numerical tests demonstrate that our
approach enables more accurate viscoelastic modeling than other approaches.

Introduction

The principal difficulty of implementation of realistic
attenuation in time-domain methods is due to the fact that
the stress–strain relation has the form of a convolution in-
tegral. Day and Minster (1984) used the Padé approximation
to expand a frequency-dependent viscoelastic modulus into
an nth-order rational function in order to replace the con-
volutory integral by n first-order differential equations. Em-
merich and Korn (1987) improved the approach (in terms of
accuracy and efficiency) by considering the rheology of the
generalized Maxwell body (GMB) whose viscoelastic mod-
ulus has the desired rational form. Carcione et al. (1988)
developed an alternative approach based on rheology of the
generalized Zener body. All the approaches allow for both
an arbitrary attenuation-frequency law and its spatial hetero-
geneity.

In this article we consider the GMB rheology. In a Car-
tesian coordinate system (x1, x2, x3), let q(xi), i � {1,2,3},
be density, j(xi) elastic bulk modulus, l(xi) elastic shear
modulus, (xi, t) the displacement vector, t time, (xi , t)rru f
body force per unit volume, sij(xk, t) and eij(xk, t), i, j, k �
{1,2,3}, stress and strain tensors. (Further, x1, x2, x3 and x,
y, z will be used interchangeably.) Following Emmerich and
Korn (1987), the equation of motion and Hooke’s law for
an isotropic viscoelastic medium can be written as (sum-
mation convention for repeated subscripts assumed)

qü � s � f (1)i ij , j i

and

1s � je d � 2l (e � e d )ij kk ij ij kk ij3n
j,kk l,ij l,kk1� [j f d � 2l(f � f d )], (2)� l ij l l ij3l�1

where sij,j � �sij/�xj and anelastic functions , M � {j,M,ijfl

l}, l � 1,2, . . . , n, satisfy 9n equations

M,ij M,ij Mḟ � x f � x Y e . (3)l l l l l ij

(Some authors use the term “memory variables” instead of
“anelastic functions.”) Here, xl (l � 1, 2, . . . , n) are the
angular relaxation frequencies. The anelastic coefficients

are obtained from the systems of equationsj lY and Yl l

n 2 �1˜x x̃ � x Q (x̃ )l k l g k g �1˜Y � Q (x̃ );� l g k2 2x̃ � xl�1 k l (4)
k � 1, . . . , 2n � 1, g � {�, b}

42 2 b�� Y � b Yl l3l b jY � Y , Y � , (5)l l l
42 2� � b3

where

4 1/2 1/2� � [(j � l)/q] , (l/q) .
3
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Figure 1. Generalized Maxwell body representing
a complex viscoelastic torsion modulus with elastic
moduli l , viscosities l /xl, and relaxed modulusl lY Yl l

lREL. An analogous body is assumed for a complex
viscoelastic bulk modulus.

Here, Q̃� ( k) and Q̃b ( k) are desired values of the qualityx̃ x̃
factors for the P and S waves, respectively, at frequencies

k. It is reasonable that both xl and k cover the frequencyx̃ x̃
range of interest logarithmically equidistantly, 1 � x1, andx̃

2n�1 � xn. The rheology of the considered viscoelasticx̃
medium is represented by two GMBs representing visco-
elastic bulk and shear moduli. The rheology is schematically
illustrated in Figure 1. The GMB viscoelastic modulus is

n
xlMM (x) � M 1 � Y , M � {j, l}, (6)n U � l U� �ix � xl�1 l

where the subscript U indicates the unrelaxed modulus.
(Note that in practice phase velocities at certain frequencies
are usually known. Relations between the phase velocities
and corresponding unrelaxed moduli can be found in Moczo
et al. [1997].)

In order to reduce the number of the anelastic functions
from 9n to 6n, we can rewrite equations (2) and (3) as

n
1 ijs � j e d � 2l (e � e d ) � n (7)ij kk ij ij kk ij � l3 l�1

and

ij ij jṅ � x n � x [j Y e dl l l l l kk ij

1l� 2l Y (e � e d )], l � 1, 2, . . . , n (8)l ij kk ij3

using modified anelastic functions . Simple implementa-ijnl

tion of the attenuation in the displacement-stress or displace-
ment-velocity-stress or velocity-stress finite-difference (FD)
schemes (for the schemes see, e.g., Graves [1996], Moczo
et al. [2001], and Moczo et al. [2002]) yields additional (in
respect to the perfectly elastic case) quantities in each grid
cell:

j l lxy lyz lzxY , Y , Y , Y , Y ,l l l l l (9)
xx yy zz xy yz zxn , n , n , n , n , n , l � 1, 2, . . . , n.l l l l l l

Location of the anelastic functions and coefficients in the
staggered-grid cell is shown in Figure 2. Note that hetero-
geneity of the medium inside the cell itself is assumed. The
corresponding number of bytes of additional memory in the
MX • MY • MZ rectangular grid is

additionalN � p • MX • MY • MZ • 11 • n, (10)

where p � 4 or 8 in single or double precision, respectively.
Because n should be at least 3, the total additional memory
obviously is very large.

The number of anelastic coefficients does not poseMijYl

a problem provided that each grid cell is assigned an integer
number representing a type of material cell (a set of material
parameters) and the heterogeneity of the medium is de-

scribed as a spatial distribution of types of material cells.
What is desirable to reduce is the number of the anelastic
functions in the whole grid. Zeng (1996), Day (1998),ijnl

and Day and Bradley (2001) developed approaches allowing
coarse spatial sampling of the anelastic functions. In Day’s
(1998) approach, one anelastic function for one relaxationijnl

frequency xl is distributed with a spatial period of 2h, h
being a grid spacing. Consequently, n � 8. Considering, for
example, location of the stress-tensor component Tzx at eight
corners of a grid cube h � h � h, only one of the eight

anelastic functions is assigned to one of the eigth cornerszxnl

(say, is assigned to one position, to other position,zx zxn n1 2

and so on). Consequently, the total number of , l � 1, 2,zxnl

. . . , 8, in the whole grid is MX/2 • MY/2 • MZ/2 • 8 � MX
• MY • MZ. Because we have six independent stress-tensor
components, the total number of all anelastic functions in
the whole grid is MX • MY • MZ • 6. Because the anelastic
coefficients are distributed in the same manner, the totalMijYl

number of all the anelastic coefficients in the whole grid is
MX • MY • MZ • 5. Thus, the additional memory due to
attenuation in Day’s (1998) approach in the displacement-
stress or displacement-velocity-stress or velocity-stress
scheme, compared with equation (10), is

additionalN � p • MX • MY • MZ • 11. (11)

It is clear from equations (10) and (11) that the additional
memory in the case of eight relaxation frequencies is equiv-
alent to the case of just one relaxation frequency in Emmer-
ich and Korn’s (1987) original treatment, which is signifi-
cant.
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Figure 2. A staggered-grid FD cell with positions of the wave-field variables (dis-
placement and/or velocity vector components, stress-tensor components, and anelastic
functions) and effective media parameters (elastic bulk and shear moduli, and anelastic
coefficients; indices A and H indicate, e.g., arithmetic and harmonic averages as defined
in Moczo et al. [2002]).

Incorporation of Attenuation in Media
with Material Discontinuities

Heterogeneous FD Schemes

Realistic models of the Earth’s interior often have to
include layers/blocks of different materials, and thus also
interfaces (material discontinuities) between them, at which
material parameters change discontinuously. The equation
of motion governs the motion outside the discontinuity, but
boundary conditions (for example, continuity of displace-
ment and traction vectors at welded interfaces) apply to the
discontinuity. In the heterogeneous approach only one FD
scheme is used for all interior grid points (points not lying
on boundaries of a grid) regardless of their positions with
respect to the discontinuity. The presence of the disconti-
nuity is accounted for only by values of (effective) grid ma-
terial parameters.

Justification and construction of heterogeneous FD
schemes has recently been addressed by Moczo et al. (2002),
who analyzed 1D and 3D elastic problems. In the 1D prob-
lem for a welded planar interface, they found a simple physi-
cal model of the contact of two media and the exact hetero-
geneous formulation of the equation of motion and Hooke’s
law, that is, equations for an averaged medium representing
the contact. Then they constructed a corresponding 1D het-

erogeneous FD scheme. In the 3D problem, they analyzed
three cases: (1) a planar interface parallel to a coordinate
plane in the Cartesian coordinate system, (2) a planar inter-
face in a general position, and (3) a nonplanar interface be-
tween two isotropic media. In case 1, the averaged medium
representing the planar-interface contact of two isotropic
media is transversally isotropic: five independent elastic co-
efficients describe the averaged medium, that is, Hooke’s
law includes five independent elastic coefficients. In case 2,
21 generally nonzero elastic coefficients are necessary to
describe the averaged medium at a point of the interface.
The same is true for case 3 assuming that a tangential planar
interface is used at a point to approximate the nonplanar
interface. Because a corresponding heterogeneous FD
scheme would require tremendous computer memory, they
considered simplified boundary conditions at the contact for
which the averaged medium is described by only two elastic
coefficients, as any of the two isotropic media in contact.
Based on the simplified approach, Moczo et al. (2002) con-
structed the explicit heterogeneous 3D fourth-order in space,
second-order in time, staggered-grid FD scheme with vol-
ume harmonic averaging of the bulk and shear moduli and
volume arithmetic averaging of density. As documented by
accuracy tests, the scheme allows for an arbitrary position
of the discontinuity in the spatial grid. The scheme can ac-
count
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for a difference in a layer thickness smaller than the spatial
grid spacing. Moczo et al. (2002) demonstrated that such a
thickness variation can yield a considerably different seismic
motion. (This is an important supportive argument for the
approach presented later.) The structure of the scheme is the
same as that of standard fourth-order staggered-grid FD
schemes. The difference lies in the definition of the grid
material parameters. Referring to Figure 2, a volume arith-
metic average of density and volume harmonic averages of
elastic moduli are evaluated as

x y zI�1/2 K�1 L�1

1A 1 1q � qdxdydz , (12)I,K� ,L� 3 � � �2 2 h
x y zI�1/2 K L

x y z �1l�1 K L�1�1

1 1H 1 1 1j � dxdydz , (13)l� ,K� ,L� 3 � � �2 2 2 h j� �yKx zl L

x y z �1I�1 K�1 L�1

1 1H 1 1 1l � dxdydz . (14)I� ,K� ,L� 3 � � �2 2 2 h l� �
x y zI K L

Contact of Two Viscoelastic Media

Each of the two viscoelastic media is described by real
density and complex frequency-dependent bulk and shear
moduli given, in the case of the GMB rheology, by equation
(6). As is clear from equations (7) and (8), the question is
how to determine elastic (unrelaxed) moduli and anelastic
coefficients for an averaged medium representing a contact
of two media if a material discontinuity goes through a grid
cell. Applying averaging (for example, volume harmonic
averages-equations 13 and 14) to viscoelastic moduli, we
can numerically determine average viscoelastic moduli in
the frequency domain. Having the averaged viscoelastic
moduli, we can determine the corresponding quality factors:

�1 A A¯ AQ (x̃ ) � Im M (x̃ )/Re M (x̃ );M k n k n k (15)
k � 1, 2, . . . , 2n � 1.

Assuming that the rheology of the averaged medium can be
approximated by the GMB rheology, we can use a system of
equations analogous to equations (4) to determine anelastic
coefficients corresponding to the averaged medium.

It is clear from equation (6) that MU � Mn (x). Anlim
x→�

obvious implication is that the limit taken from the averaged
viscoelastic modulus gives the averaged unrelaxed (elastic)
modulus. In other words, the elastic moduli of the averaged
viscoelastic medium can be obtained in the same way as in
the perfectly elastic medium (for example, using formulas
13 and 14 for elastic moduli).

Contact of Two Media and Day’s Coarse Graining

While Day’s (1998) coarse spatial distribution and its
recent improvement by Graves and Day (2003) are excellent
tools to make the viscoelastic calculation in smoothly het-
erogeneous medium efficient, it is clear that an interface be-
tween two media may be so localized that the two media are
characterized in two disjunctive (not overlapping) frequency
intervals. Then, how can the two media physically interact
and be averaged? In principle, it would be possible at one
grid position to account also for neighboring anelastic func-
tions (and thus relaxation frequencies) by including properly
weighted anelastic functions from neighboring grid positions
in the sum of the functions in equation (7). This, however,
is not a good solution because it would introduce artificial
additional smoothing (averaging) of material parameters.
The reason is that the anelastic functions defined by equa-
tions (8) depend on the anelastic coefficients.

New Definition of Anelastic Functions

In order to overcome the limitation discussed earlier
and, at the same time, keep coarse spatial sampling, it is
necessary to define anelastic functions in a new way and
rewrite Hooke’s law for the viscoelastic medium accord-
ingly. If we divide each equation of the system of equations
(3) by an appropriate anelastic coefficient and define newMYl

anelastic functions as

new,ij M,ij Mf � f /Y , (16)l l l

the system (3) of 9n equations becomes a system,

new,ij new,ijḟ � x f � x e ;l l l l ij (17)
l � 1,2, . . . , n; i,j � {1,2,3},

of 6n independent equations. It is clear from system (17) that
the new anelastic functions do not depend on the material
properties, that is, on anelastic coefficients. Inserting defi-
nition (16) into equation (2) leads to Hooke’s law in the form

1s � je d � 2l (e � e d )ij kk ij ij kk ij3
n

j new,kk� [j Y f d (18)� l l ij
l�1

l new,ij new,kk1� 2lY (f � f d )].l l l ij3

Implementation in the Staggered-Grid FD Scheme

Time-Integration Scheme

With the second-order accuracy, may be approx-new,ijḟl

imated by a central-difference formula and the anelastic
function itself by

new,ij new,ij new,ijf (t ) � (f (t ) � f (t ))/2, (19)l m l m�1/2 l m�1/2



Short Notes 2277

Figure 3. Spatial distribution of grid cells and
anelastic functions. The number on a cell face indi-
cates the relaxation frequency for which the anelastic
functions are localized in the cell. For example, grid
cell 1 contains new,xx new,yy new,zz new,xy new,yzf , f , f , f ,f ,1 1 1 1 1

, and so on.new,zxf1

where tm denotes the mth time level. Then it follows from
system (17) that

2xDtlnew,ijf (t ) � e (t )l m�1/2 ij m2 � xDtl

2 � xDtl new,ij� f (t ), (20)l m�1/22 � xDtl

where Dt is a timestep. Obviously, the value of (tm)new,ijfl

calculated using schemes (19) and (20) may be used in a FD
scheme solving equation (18). It is, however, possible to
avoid the necessity to keep in memory both (tm�1/2)

new,ijfl

and (tm�1/2) for a grid position at one time by insertingnew,ijfl

equation (20) into equation (19) and obtaining

xDtlnew,ijf (t ) � � e (t )l m ij m2 � xDtl

2 new,ij� f (t ). (21)l m�1/22 � xDtl

Insertion of equation (21) into Hooke’s law (equation 18)
and rearranging gives

1˜s (t ) � je (t )d � 2l̃ (e (t ) � e (t )d )ij m kk m ij ij m kk m ij3
n

j new,kk˜� [Y f (t )d� l l m�1/2 ij
l�1

l new,ij new,kk1˜� 2Y (f (t ) � f (t )d )],l l m�1/2 l m�1/2 ij3

(22)

where

n n
j lj̃ � j 1 � d Y , l̃ � l 1 � d Y� l l � l l� � � �

l�1 l�1
j j l l˜ ˜Y � c jY , Y � c lY (23)l l l l l l

xDt 2ld � , c � .l l2 � xDt 2 � xDtl l

We can see that using scheme (20) and a proper scheme for
equation (22), it is enough to have only one variable for one
anelastic function at one grid position at any time.

Spatial Distribution of Anelastic Coefficients
and Functions

As stated earlier, the spatial distribution of the anelastic
coefficients shown in Figure 2 does not pose a memory prob-
lem if each grid cell is assigned an integer number repre-
senting a type of material cell and the heterogeneity of the
medium is described as a spatial distribution of the types of
material cells. Such an approach is not a new one. It has
been advantageously applied, for example, by Kristek et al.
(1999) to model seismic motion in the Osaka sedimentary
basin with a complex shape of the sediment–basement in-
terface. Moczo et al. (2002) demonstrated considerable dif-

ferences in seismic motions due to variations in layer thick-
ness smaller than the spatial grid spacing (taken as 1/6 of
the minimum wavelength). This means that it can be im-
portant to account for the heterogeneity of the medium inside
a grid cell. Thus, in our implementation, each grid cell con-
tains , l � 1,2, . . . , n.j l lxy lyz lzxY , Y , Y , Y , Yl l l l l

With the new anelastic functions, independent of ane-
lastic coefficients, it is possible to define their coarse spatial
distribution different from that of Day’s (1998). Figure 3
shows a natural choice of the number of the relaxation fre-
quencies, n � 4, and the spatial distribution of the anelastic
functions. One grid cell contains all anelastic functions for
one relaxation frequency. As it is clear from Figure 3, the
total number of the all anelastic functions in the whole grid
is 2 • MX/2 • MY/2 • MZ/2 • 6 • 4 � MX • MY • MZ • 6, the
same as in Day’s (1998) approach. Because, as explained
earlier, the number of the anelastic coefficients does not pose
a memory problem, we keep all , lj l lxy lyz lzxY , Y , Y , Y , Yl l l l l

� 1, . . . , 4, in each grid cell.

Accounting for All Relaxation Frequencies and
Functions at a Grid Position

Let TI,K,L be any of the shear stress-tensor components
in grid cell (I,K,L). Then, omitting the time index, a FD
scheme for equation (22) may be symbolically written as

4

˜T � 2l̃ E � 2 Y X .I,K,L I,K,L I,K,L � l I,K,L l I,K,LREL; REL;
l �1REL
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MODEL:

h = 50 m

LAYER
THICKNESS:

M2

225 m

M1

200 m

U W

Tzx Txx, Tyy, Tzz

receiver

free surface

Figure 4. Positions of the free surface and layer–
half-space interface in two models of a surface layer
over half-space, shown schematically in one vertical
grid plane. M1 and M2 differ in the position of the
layer–half-space interface in the spatial grid (the same
for both models) and thus in the layer thickness; the
difference in thickness is equal to half grid spacing.
Parameters of the model are in Table 1.

Table 1
Model Parameters: Surface Layer over Half-Space

Both Models,
M1 and M2

�
(m/sec)

b

(m/sec)
q

(kg/m3)
QP

(1 Hz)
QS

(1 Hz)

Layer 1125 625 1600 10 5
Half-space 5468 3126 1800 100 50

Layer thickness: M1, 200 m; M2, 225 m. �, P-wave velocity; b, S-wave
velocity; q, density.

Because in a particular grid cell (I,K,L) the anelastic function
only for one particular relaxation frequency is available, we
can approximate the sum over l � 1, . . . , 4 by weighted
averaging of the anelastic functions from the grid cell (I,K,L)
and neighboring grid cells. The scheme

˜T � 2l̃ E � 2Y • XI,K,L I,K,L I,K,L ind(I,K,L);I,K,L ind(I,K,L);I,K,L

X � Xind(I�1,K,L);I�1,K,L ind(I�1,K,L);I�1,K,L˜� 2Y •ind(I�1,K,L);I,K,L 2

X � Xind(I,K�1,L);I,K�1,L ind(I,K�1,L);I,K�1,L˜� 2Y •ind(I,K�1,L);I,K,L 2

X � Xind(I,K,L�1);I,K,L�1 ind(I,K,L�1);I,K,L�1˜� 2Y •ind(I,K,L�1);I,K,L 2

with

ind(I,K,L) � ( Kmod2) • {1 � (L�1)mod2 � 2[(I�1)mod2]}

� (1�Kmod2) • {1 � (L )mod2 � 2[(I )mod2]}

gives natural averaging in three coordinate directions. An
analogous but longer formula is easily obtained for the nor-
mal stress-tensor components.

Numerical Tests

Two models of a single layer over half-space are sche-
matically shown in Figure 4. In model M1, the layer–half-
space interface is located at a grid plane with the shear stress-
tensor components; in model M2, it is at a grid plane with
the normal stress-tensor components. The model parameters
are in Table 1. Futterman’s (1962) Q(x) law was assumed.
A double-couple point source (0 m, 0 m, 525 m) was sim-
ulated using a body-force term, and its source-time function
was the Gabor signal, s(t) � exp{�[x(t � ts)/c]

2}cos[x(t
� ts) � h], x � 2pf p, t � �0,2ts�. Here, f p is the predom-
inant frequency, c controls the width of the signal, h is a
phase shift, and ts � 0.45c/f p. The source parameters are in
Table 2. A receiver’s coordinates were (1475 m, 0 m, 25 m).
The numbers of grid cells in the x, y and z directions were
MX � 301, MY � 301, and MZ � 402. The grid spacing
was h � 50 m, timestep Dt � 0.0045 sec. Except for the
inclusion of the attenuation, the FD calculation (elastic part
of the scheme, point source simulation, free surface, non-
reflecting boundaries) is the same as in Moczo et al. (2002).

For both M1 and M2 models, synthetics were calculated
using our approach, using Day and Bradley’s (2001) ap-
proach, and by the discrete-wavenumber (DWN) method
(Bouchon, 1981; computer code Axitra by Coutant, 1989).
All synthetics are compared in Figure 5. We can see that the
synthetics obtained by our approach are in better agreement
with the DWN method than those obtained by Day and Brad-
ley’s (2001) approach.
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Figure 5. Comparison of synthetics obtained by
our approach and Day and Bradley’s approach with
discrete-wavenumber (DWN) synthetics for models
M1 and M2. Note the very good accuracy of our FD
synthetics for both positions of the layer–half-space
interface with respect to the spatial grid. Also note the
considerable difference between synthetics due to vari-
ation in the layer thickness equal to half grid spacing.

Conclusions

We briefly reviewed the incorporation of realistic atten-
uation into time-domain computations of seismic-wave prop-
agation with an emphasis on computational efficiency. We
considered the problem of accounting for a material discon-
tinuity in heterogeneous FD schemes for perfectly elastic and
viscoelastic media. We showed that the anelastic coefficients
and elastic moduli of the averaged medium representing con-
tact of two media can be determined from averaging applied
to viscoelastic and elastic moduli, respectively.

In order to account properly for material discontinuities
and, at the same time, be memory efficient, we defined (1)
the anelastic functions in a new way, as being independent
of anelastic coefficients (that is, independent of material pa-
rameters), and (2) a new coarse spatial distribution of the
anelastic functions. As a consequence, in the sum of the
anelastic functions in Hooke’s law we can, at a given grid
position, account for anelastic functions at neighboring grid
positions (and thus for other relaxation frequencies) by
proper weighted averaging of the anelastic functions from
neighboring grid positions without artificial additional av-
eraging of the material parameters themselves.

If the anelastic functions are determined from volume
harmonic averages of the viscoelastic moduli, we get a con-
sistent extension of the recently developed elastic FD scheme
(Moczo et al., 2002), which was shown to be more accurate
for media with discontinuities than standard staggered-grid
FD schemes. Numerical tests demonstrate that our approach
enables more accurate viscoelastic modeling than other ap-
proaches.
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parameters of Gabor signal.
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