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S U M M A R Y
Numerical simulations of dynamic earthquake rupture require an artificial initiation proce-
dure, if they are not integrated in long-term earthquake cycle simulations. A widely applied
procedure involves an ‘overstressed asperity’, a localized region stressed beyond the static
frictional strength. The physical properties of the asperity (size, shape and overstress) may sig-
nificantly impact rupture propagation. In particular, to induce a sustained rupture the asperity
size needs to exceed a critical value. Although criteria for estimating the critical nucleation
size under linear slip-weakening friction have been proposed for 2-D and 3-D problems based
on simplifying assumptions, they do not provide general rules for designing 3-D numeri-
cal simulations. We conduct a parametric study to estimate parameters of the asperity that
minimize numerical artefacts (e.g. changes of rupture shape and speed, artificial supershear
transition, higher slip-rate amplitudes). We examine the critical size of square, circular and
elliptical asperities as a function of asperity overstress and background (off-asperity) stress.
For a given overstress, we find that asperity area controls rupture initiation while asperity shape
is of lesser importance. The critical area obtained from our numerical results contrasts with
published theoretical estimates when background stress is low. Therefore, we derive two new
theoretical estimates of the critical size under low background stress while also accounting for
overstress. Our numerical results suggest that setting the asperity overstress and area close to
their critical values eliminates strong numerical artefacts even when the overstress is large. We
also find that properly chosen asperity size or overstress may significantly shorten the duration
of the initiation. Overall, our results provide guidelines for determining the size of the asperity
and overstress to minimize the effects of the forced initiation on the subsequent spontaneous
rupture propagation.
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1 I N T RO D U C T I O N

Earthquakes are associated with rupture propagation on a seismic
fault. When the fault is exposed to slow tectonic loading rupture
naturally nucleates at its weakest point—the location where the
strength equals the ‘initial’ stress (i.e. the stress at the onset of
rupture induced by tectonic loading and previous slip). While the
understanding of the earthquake nucleation process is of fundamen-
tal importance for earthquake physics (Uenishi & Rice 2003; Rubin
& Ampuero 2005; Ampuero & Rubin 2008) studies focused on fast
dynamic rupture processes often adopt simplifying assumptions
about earthquake nucleation.

Because of limited possibilities for direct observations of real
ruptures, many studies of earthquake dynamics are based on nu-

merical simulations. A modern trend in computational earthquake
dynamics promotes simulations that include long-term deforma-
tion over multiple earthquake cycles (e.g. Barbot et al. 2012). In
that approach nucleation is spontaneous, mechanically consistent
and the physics of nucleation is fully considered. However, the sim-
pler and less computationally costly approach of simulating single
earthquake ruptures is still appropriate to study both fundamental
aspects of earthquake physics and to utilize dynamic rupture sim-
ulation for ground-motion prediction (e.g. Ripperger et al. 2007,
2008). In such cases, artificial procedures are used to initiate a self-
sustained rupture. Here, we use the term ‘initiation’ to distinguish
an artificial procedure from natural nucleation of an earthquake.

An overstressed asperity—defined as a localized region where
the initial shear traction is prescribed to exceed the static fault
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strength—is an initiation procedure often applied in dynamic mod-
els that adopt the linear slip-weakening friction law (e.g. Duan
& Oglesby 2006; Ripperger et al. 2007, 2008; Dalguer & Day
2009; Brietzke et al. 2009; Pelties et al. 2013) or velocity- and
state-dependent friction laws with a static strength threshold (e.g.
Ampuero & Ben-Zion 2008). Wide recognition of this initiation
procedure is also indicated by its use in several SCEC/USGS dy-
namic earthquake rupture code verification exercises (Harris et al.
2009). An overstressed asperity, or ‘initiation zone (IZ)’, is defined
by prescribing its size, shape and overstress (the difference between
the static strength and the initial traction inside the asperity).

Previous studies discuss a variety of options for setting the ini-
tiation parameters, but also reveal that the size of the IZ strongly
influences the subsequent rupture propagation. Using a too large
IZ may lead to, for example, a forced transition from sub-Rayleigh
to supershear rupture speed (e.g. Liu & Lapusta 2008) while a too
small IZ leads to premature rupture arrest. Therefore, it is impor-
tant to appropriately choose the size of the IZ. Although different
criteria for estimating nucleation size were previously proposed for
the 2-D problem (e.g. Andrews 1976a,b; Campillo & Ionescu 1997;
Favreau et al. 1999; Uenishi & Rice 2003) and the 3-D problem
(e.g. Day 1982; Favreau et al. 2002; Uenishi & Rice 2004), these do
not provide general rules for designing numerical simulations (e.g.
Bizzarri 2010; Galis et al. 2010).

In addition, various shapes of the IZ were used in previous studies.
For example, a square shape was selected because it can be applied
in the largest number of numerical methods (e.g. Harris et al. 2009).
On the other hand, an elliptical shape (e.g. Uenishi & Rice 2004;
Dunham 2007) was motivated by considering two physical aspects:
(1) the estimates of the nucleation size for the in-plane and antiplane
modes are different and (2) soon after initiation, the rupture becomes
elliptical, regardless of the shape of the IZ. Bizzarri (2010), inspired
by the approach of Day (1982), tested a circular IZ. Ripperger
et al. (2007) used complex-shaped initiation zones whose exact
shapes were determined by the underlying heterogeneous stress
pattern and the area needed to achieve spontaneous dynamic rupture
propagation.

The overstress is usually assumed not to exceed 1 per cent of
the static strength drop and is typically applied as a discontinuity
of initial stress at the rim of the IZ. Two recent studies applied a
smooth spatial distribution of initial stress (Bizzarri 2010; Galis
et al. 2010).

In contrast to previous theoretical studies on rupture initiation,
we are here interested in self-sustained ruptures. Previous works on
rupture initiation under slip-weakening friction (e.g. Campillo &
Ionescu 1997; Ampuero et al. 2002; Uenishi & Rice 2003) estab-
lished critical length scales for the onset of self-accelerating slip,
but did not consider whether the rupture became indefinitely self-
sustained or arrested spontaneously at some (possibly large) dis-
tance from the nucleation area. The transition from spontaneously
arresting to self-sustained ruptures has been studied under slip-
weakening friction by Ampuero et al. (2006), Viesca & Rice (2012)
and Garagash & Germanovich (2012) in 2-D, and by Ripperger et al.
(2007) in 3-D. Our first goal is to determine the sufficient (‘critical’)
conditions to initiate sustained ruptures, that is, ruptures on faults
with uniform background stress that propagate indefinitely unless
they encounter a high strength barrier.

To properly study the physics of rupture propagation, it is crucial
to understand, and then minimize, the numerical artefacts induced
by the artificial initiation on the subsequent spontaneous rupture
propagation. Compared to a natural nucleation process driven by
slow tectonic loading (e.g. Uenishi & Rice 2003), we expect the

most representative overstressed asperity initiation setting to be a
slightly ‘overcritical’ initiation, that is, one with size and overstress
values slightly larger than the critical values required to produce a
self-sustained rupture (for a given IZ shape). We therefore define
a numerical artefact as a significant difference between a solution
and the reference solution obtained for just slightly overcritical ini-
tiation. Our second goal here is to determine ‘optimal’ initiation
parameters that lead to short initiation duration (hence lower com-
putational cost) while avoiding numerical artefacts.

Bizzarri (2010) compared three rupture initiation techniques:
overstressed asperities of different shapes, forced rupture propa-
gation with constant rupture speed and perturbation of the initial
particle velocity field. He showed that the forced rupture propaga-
tion with a proper rupture speed leads to gradual transition from the
imposed initiation to spontaneous rupture propagation, and that an
elliptical overstressed asperity with smooth stress is a valid alterna-
tive to the forced-rupture-propagation initiation. He also evaluated
the optimal size of the IZ (note however that his definition of ‘opti-
mal’ differs from ours). While Bizzarri only considered two specific
values of the background stress and one value of overstress, we sys-
tematically determine the critical and optimal conditions for a broad
range of background stress and overstress values.

Here we perform a detailed parametric study and investigate
effects of the forced initiation on rupture propagation to define crit-
ical and optimal parameters for initiating 3-D spontaneous rupture
propagation. We apply different numerical methods to verify our
conclusions. We consider different sizes and shapes of the IZ as
well as different overstress values. However, for efficiency reasons,
we consider a discontinuous change of the initial stress at the rim
of the initiation zone. We compare our numerical results with pub-
lished 2-D and 3-D estimates, and present two new estimates of the
critical initiation size that include the effect of overstress.

2 N U M E R I C A L M E T H O D A N D
C O M P U TAT I O NA L M O D E L
PA R A M E T E R S

2.1 Finite-element (FE) method

We use a FE method to perform a wide range of numerical simula-
tions for this study. The FE method is implemented in a displacement
scheme on hexahedral elements, and is 2nd-order accurate in space
and time (e.g. Moczo et al. 2007; Galis et al. 2008; Moczo et al.
2014). Computational efficiency is achieved by making use of the
restoring-force vector calculated using the e-invariants (Balažovjech
& Halada 2006; Moczo et al. 2007, 2014). The traction-at-split-node
method (e.g. Andrews 1973, 1999; Day 1977) and adaptive smooth-
ing algorithm (Galis et al. 2010) are implemented for simulating
rupture dynamics.

As we focus on the initiation of the rupture propagation, it is
necessary to explain in detail the implementation of the square and
elliptical initiation zones in the FE method. The square shape is
the most natural shape for the regular hexahedral mesh whereas an
ellipse is an example of a more complex shape of the IZ.

2.1.1 Implementation of a square IZ

A square IZ with half-length Li can be defined by the condition

τ0 =
{

τ i
0 if xs − x | ≤ Li ∨ |ys − y| ≤ Li

τ0 otherwise
, (1)
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Figure 1. Implementation of an initiation zone (IZ) in the FE mesh: (a) square IZ if hypocentre coincides with a node position, (b) square IZ if hypocentre is
in the middle of an element, (c) elliptical IZ. Note that the implementation (a) is used if the size of the IZ is an odd multiple of the element size h, while the
implementation (b) is used if the size of IZ is an even multiple of the element size h.

Table 1. Model parameters: μs, static coefficient of friction; μd, dynamic coefficient of friction; Dc, characteristic distance; τ n
0 , normal component

of initial traction (negative for compression); τ s, static traction; τ d, dynamic traction; vp, P-wave speed; vs, S-wave speed; ρ, density μ; λ, Lamé
constants; ν, Poisson’s ratio; Qp, P-wave quality factor; Qs, S-wave quality factor.

μs μd Dc τ n τ s τ d vp vs ρ μ = λ ν Qp, Qs

0.6778 0.525 0.4 m –120 MPa 81.333 MPa 63 MPa 6000 m s−1 3464 m s−1 2670 kg m−3 32 GPa 0.25 ∞

where τ 0 is the initial traction on the fault, τ i
0 initial traction inside

the IZ, xs and ys are the hypocentre coordinates (a centre of the IZ).
The square IZ can be exactly represented in a uniform hexahedral

mesh only if the length of the square is divisible by the element size
h, that is, if the half-length Li is divisible by h/2. Moreover, the
hypocentre has to coincide with a node position or with the centre
of an element (see Figs 1a and b).

In implementation (a) we assume that the hypocentre coincides
with a node position, and construct an IZ with, for example, Li = 2h
(Fig. 1a). In the FE method the friction parameters are defined at
nodes. Each node represents a (small) area of the fault surface with
the node being in the centre of the area. Therefore, the effective size
of the IZ, as obtained from eq. (1), is not 2Li but 2Li + h. If the
hypocentre coincides with a node position the effective size of the
IZ is always an odd multiple of h (also if Li is not a multiple of h).

In implementation (b) we assume that the hypocentre lies at the
centre of an element (Fig. 1b). In this case, eq. (1) yields the effective
size 2Li, which is always an even multiple of h.

We can choose implementation (a) or (b), whichever results in
an effective size closer to the desired size of the IZ. The difference
in the hypocentre position in implementations (a) and (b) does
not pose a significant problem for simulations as h/2 is usually
negligible compared to the distances at which we are interested in
the rupture propagation. Moreover, later we illustrate that the effect
of the incorrect size of IZ is much stronger than a slight shift of the
hypocentre position.

The effective size of the IZ is important for simulating dynamic
rupture propagation. Therefore, in the remainder of this article we
will use the term ‘size of the IZ’ to refer to the effective size of the
IZ in the FE mesh.

2.1.2 Implementation of an elliptical IZ

An elliptical IZ can be defined by the nodes which lie inside the
ellipse with semi-axes a and b as

τ0 =
{

τ i
0 if

(
xs−x

a

)2 + ( ys−y
b

)2 ≤ 1

τ0 otherwise
. (2)

In the case of the uniform hexahedral mesh, the effective IZ is a stair-
case approximation of the desired elliptical IZ (Fig. 1c). Although
smaller elements lead to more accurate representation of the ellipse,
it will never be represented exactly in the FE mesh. Therefore, we
consider only the case when the hypocentre coincides with a node
position.

2.2 Computational model parameters

To numerically investigate the initiation of dynamic rupture prop-
agation we assume a planar fault embedded in an 3-D elastic ho-
mogeneous space. We adopt the linear slip-weakening friction law
(Ide 1972; Palmer & Rice 1973), and consider a fault plane 30 km
long and 15 km wide. Except within the IZ the friction parameters
are constant on the fault plane. The friction parameters and medium
parameters are specified in Table 1.

The dynamic rupture configuration may be characterized by the
non-dimensional strength parameter (Andrews 1976b; Das & Aki
1977)

S = τs − τ0

τ0 − τd
, (3)

where τ s =μs τ n and τ d =μd τ n are the static and dynamic tractions,
respectively, τ n is the normal component of traction and τ 0 is the
shear (also tangential or fault-parallel) component of the initial
traction. In all configurations we fix static and dynamic coefficients
of friction, and assume different values for the initial traction τ 0 to
obtain configurations with different values of S.

To correctly discretize the problem for a rupture-dynamics sim-
ulation, the resolution of the breakdown zone has to be considered.
Day et al. (2005) derived estimates of a breakdown-zone width.
Their so-called zero-speed estimates apply when rupture speed is
very low, that is, shortly after the initiation. Moreover, the zero-
speed estimate for mode II (the in-plane mode) is always larger than
the zero-speed estimate for mode III (the antiplane mode),

�III
0 = 9π

32
μ

Dc

τs − τd
, (4)

where μ is a shear modulus and Dc characteristic slip-weakening
distance. During rupture propagation the breakdown-zone width
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shrinks. Therefore, we consider a sufficiently fine discretization of
�III

0 as a necessary condition. As suggested by Day et al. (2005),
six or more grid points are necessary for adequately resolving the
breakdown zone. Obviously, this applies to their traction-at-split-
node implementation of rupture dynamics in the finite-difference
method. In our low-order FE method we use a similar implemen-
tation of rupture dynamics. Therefore, we may apply Day’s sam-
pling also in our simulations. Using parameters in Table 1 we obtain
�III

0 ≈ 617.63 m leading to a grid spacing (element size) of ∼100 m
or smaller. Note that while the estimate of �III

0 does not depend on
the initial stress τ 0, the dynamic breakdown-zone width does de-
pend on τ 0. Based on our convergence test (see Section 3.3) we
choose a grid spacing of h = 100 m as the baseline grid spacing.
Additionally, we perform some tests also for finer grid spacing,
h = 50 m.

3 V E R I F I C AT I O N O F T H E F E A N D
A D E R - D G M E T H O D S

We verify our FE method using the arbitrary high-order derivatives–
discontinuous Galerkin (ADER-DG) method to demonstrate that
our results and conclusions on the initiation parameters are not
method dependent.

The ADER-DG method combines ideas of the discontinuous
Galerkin methods with the ADER time integration providing high-
order accuracy in space and time on unstructured tetrahedral meshes
(e.g. Dumbser & Käser 2006; de la Puente et al. 2009; Pelties et al.
2012, 2013). Mesh refinement in areas of interest or strong mesh
coarsening in areas of low importance can be applied to reduce
the computational cost. No spurious reflections at the refinement
interfaces due to numerical impedance have been observed. Because
the order of accuracy O in the ADER-DG simulations is controlled
by the order of the basis functions, the same mesh may be used
with various orders of accuracy O. Moreover, the method does
not generate spurious high-frequency contributions in the slip-rate
spectra of dynamic rupture computations and therefore does not
require any artificial Kelvin–Voigt damping or filtering. Note that
ADER-DG implemented with the upwind flux is dissipative and
the amount of numerical dissipation increases very steeply as a
function of frequency. Consequently, very short wavelengths that
are poorly resolved by the mesh are adaptively damped without
perturbing longer, physically meaningful wavelengths (Pelties et al.
2012). However, the price for increased accuracy of the ADER-
DG method are higher computational costs compared with the FE
method. Therefore, we use the ADER-DG method to verify results
obtained with the FE method, and subsequently apply the FE method
for extensive simulations. Both methods were applied in previous
studies as well as benchmark exercises, and very good agreement
with independent methods was found (e.g. Moczo et al. 2007; Pelties
et al. 2012).

In the following, we present a series of numerical tests to show
that both methods provide consistent results for the square and
elliptical shapes, as well as for different sizes of the IZ. The tests
also indicate that the shape of IZ affects convergence properties. For
example, for the FE method a square IZ yields more accurate rupture
times than an elliptical IZ. On the other hand, for the ADER-DG
method an elliptical IZ yields more accurate rupture times.

3.1 Implementation of the IZ in ADER-DG method

Here we briefly summarize principles of implementation of the the
IZ in the ADER-DG method. The ADER-DG mesh is prepared

Figure 2. Illustration of a square (a) and elliptical (b) initiation zone (IZ)
in the ADER-DG mesh. Note: The elliptical initiation zone is represented
as piece-wise linear approximation of ellipse, however, the errors are within
thickness of the line depicting the desired ellipse.

such that the tetrahedral elements follow the shape (and thus also
size) of the IZ as precisely as possible. Because the ADER-DG
method uses modal basis functions, the frictional parameters are
defined only at the triangular element-faces across the fault (not at
the element edges). Consequently, a square IZ is exactly represented
(Fig. 2a). However, an elliptical IZ is represented as a piece-wise
linear approximation of the desired ellipse (Fig. 2b). If more ac-
curate representation of the ellipse was needed, mesh refinement
would be necessary.

3.2 Verification for the square and elliptical initiation
zones

Here we compare and validate dynamic-rupture simulations for
the square and elliptical initiation zones in the case of S = 1.0.
Using parameters in Table 1 we obtain τ 0 = 72.167 MPa. The
initial traction inside the IZ, τ i

0 , is 81.379 MPa (i.e. the overstress
is 0.5 per cent of strength excess, �τE = τ s − τ 0). The desired
half-length of the square IZ, Li, is 900 m and the semi-axes of the
desired elliptical IZ are a = 1200 m and b = 900 m, respectively.

For the FE simulations we choose element sizes h = 100, 50 and
25 m. Because the desired size of the square IZ (2Li = 1800 m)
is an even multiple of any of the considered element sizes, we use
implementation (b) to obtain an IZ with a correct effective size
(Fig. 1b). Because we are interested in comparing slip-rate time
histories, we apply the adaptive smoothing algorithm (Galis et al.
2010) to suppress the spurious high-frequency oscillations in the
FE simulations.

For the ADER-DG simulations we select orders of accuracy O4,
O5 and O6, and edge length h = 200 m. Note that because the
element size does not change, we can use the same mesh for all
ADER-DG simulations.

The x-components of the slip rate at receivers R1 and R2 (Fig. 3)
obtained with the square and the elliptical initiation zones are com-
pared in Figs 4 and 5, respectively. The slip-rate curves are relatively
simple due to the homogeneous configuration, but reveal a 2-step
healing process: first, partial healing (at ∼7 s at R1 and ∼5 s at R2)
occurs due to the healing pulse propagating from the longer edge
of the fault while the second healing episode (at ∼8 s) is caused by
the healing pulse from the shorter edge of the fault.

Overall, the agreement between the ADER-DG and FE solutions
for the square as well as the elliptical initiation zone is very good.
However, zooming into the rupture times and peak amplitudes (inset
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Figure 3. Positions of receivers R1 and R2 on the fault plane.

images in Figs 4 and 5) reveals differences in both the peak am-
plitudes and rupture times. In the following, we compare the ‘less
accurate’ ADER-DG O4 and FE h = 100 m solutions and the ‘more
accurate’ ADER-DG O6 and FE h = 25 m solutions in terms of dif-
ference in peak slip rate, �u̇max, and difference in rupture time, �Tr.
If methods produce consistent results, then difference between the
ADER-DG and FE solutions should be decreasing with increasing
accuracy. The results for the square and elliptical initiation zones
are summarized in Table 2.

Examining differences in the peak slip rate, �u̇max, in Table 2 we
observe improvement in all cases except at receiver R2 for the square
initiation zone. This is in accordance with our expectations, because
the peak amplitudes in both methods vary non-monotonically with
increasing accuracy, as shown in Figs 4 and 5. The explanation is
different for the FE and ADER-DG methods. For the FE method, this
is caused by the spurious high-frequency oscillations. The adaptive
smoothing algorithm reduces the oscillations, but does not remove
them completely. Moreover, the oscillations are stronger in the an-
tiplane direction than in the in-plane direction. Therefore, the FE
solutions at receiver R2 are more affected. The peak slip rates in the
ADER-DG solutions, even though not affected by spurious high-
frequency oscillations, exhibit slower convergence and relatively
larger errors than the rupture time, as demonstrated by Pelties et al.
(2012). The difference in rupture times, �Tr, in Table 2 provides
more consistent results. The absolute value of �Tr decreases in all
cases. Note that the change of sign of �Tr for the elliptical initi-
ation zone may indicate different rupture speed in the FE and in
ADER-DG simulations. However, �Tr for ‘more accurate’ results
are very small and comparable with the time step used in the FE
simulations (�t = 0.0024 s for h = 25 m and �t = 0.0096 s for
h = 100 m), which indicates that the difference in rupture speed is
not significant.

In addition to comparing the solutions obtained with both meth-
ods for the same initiation zone, it is also interesting to examine
solutions obtained with one method for both initiation zones. The
differences between the FE solutions obtained with varying element
sizes are larger for the elliptical initiation zone than those for the
square initiation zone (e.g. compare the rupture times of the FE
solutions in Figs 4 and 5). This is likely a consequence of how well
the initiation zone is represented by the mesh. The square initiation
zone is exactly represented in meshes with all element sizes (h = 25,
50 as well as 100 m). On the other hand, the elliptical initiation zone
is only approximately represented in the FE mesh. For h = 100 m the
area of the effective initiation zone is 2.4 per cent smaller than area
of the desired initiation zone, for h = 25 m the effective initiation
zone is only 0.4 per cent smaller. On the other hand, if we compare
the ADER-DG solutions obtained with different order of accuracy

O we observe smaller differences for the elliptical initiation zone
(e.g. compare the rupture times of ADER-DG solutions in Figs 4
and 5). The increased accuracy, using higher-order basis functions,
does not improve the representation of the initiation zone. This is
true for both the square and elliptical initiation zones, which indi-
cates that the observed differences in the ADER-DG solutions are
not due to the mesh representation. We conjecture that ADER-DG
will likely perform better for smooth configurations, as, for exam-
ple the elliptical initiation zone. Therefore, the ADER-DG solutions
converge faster for the elliptical initiation zone than for the square
initiation zone.

Based on this analysis we conclude that the observed decrease
of �Tr and �u̇max, as well as overall very good agreement of all
solutions demonstrate that both methods produce consistent results
for square as well as elliptical initiation zones.

3.3 Effects of an incorrect size of the initiation zone

Here we illustrate that variations of the effective size (though small)
may cause significant effects. For this purpose we perform the same
tests with the square initiation zone as above. The desired size
2Li = 1800 m is an even multiple of the element size. Therefore,
implementation (b) was used in the previous tests. Now we use
implementation (a) that is appropriate if the size of the initiation
zone is an odd multiple of the element size.

The results at receiver R1 are compared in Fig. 6. We observe that
while implementation (a) leads to significant differences in rupture
times, with the correct implementation (b) we can not distinguish
the rupture times. There are also small differences in amplitude.
The relative difference in amplitude between solutions obtained
with implementations (a) and (b) are 2.2, 1.4 and 0.6 per cent for
h = 100, h = 50 and h = 25 m, respectively. Larger amplitudes
in the solutions obtained with the incorrect implementation (a) are
likely a consequence of the larger effective size of the initiation
zone. Due to the incorrect implementation the effective size of
the initiation zone is not 1800 m but 1900 m for h = 100 m,
1850 m for h = 50 m and 1825 m for h = 25 m. The effect
is even more important when examining relative dimensions of
the initiation zone. For h = 100 m the effective initiation zone is
only 5.6 per cent larger than the desired size, but the effects are
significant. The effects are still very clear also for h = 25 m, when
the initiation zone is only 1.4 per cent larger.

In absence of a reference analytical solution, the convergence
rate of a method is an important parameter. Our numerical results
indicate that the convergence rates of rupture time obtained with
implementations (a) and (b) significantly differ. Consequently, the
conclusions based on an analysis of the convergence of the rupture
time might be misleading if effective size of the initiation zone is
not taken into account.

3.4 Convergence of the critical size of the initiation zone

Understanding the sensitivity of the FE and ADER-DG methods
to the shape of the initiation zone and its representation in the
numerical mesh we now investigate the critical size of the initiation
zone that leads to self-sustaining spontaneous rupture propagation.

For these tests we choose two extreme configurations, one with
low strength parameter, S = 0.1, and one with high strength param-
eter, S = 2.0. Consequently, the initial tractions are τ 0 = 79.667 and
69.111 MPa, respectively. We use the square initiation zone with the
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Figure 4. Comparison of the x-component of slip rate obtained with the
FE and ADER-DG methods with different discretizations using the square
initiation zone. Embedded images show details of peak amplitudes and
rupture times.

initial tractions inside the initiation zone τ i
0 = 81.342 and 81.394

MPa, respectively.

3.4.1 Convergence for the FE method

With the FE method we conduct the convergence test for h = 200,
150, 100, 75, 50, 37.5 and 25 m, and for S = 2.0 also h = 18.75 m
(left-hand column of Fig. 7; S = 0.1 in the top and S = 2.0 in the
bottom row; x-axis is the element size h). The effective half-length
of the initiation zone, Li, is always a multiple of h/2, therefore,
the resolution of the size of the initiation zone depends on h. For
example, h = 200 m allows simulations with Li = 600, 700, 800,
. . . m and h = 150 m allows simulations with Li = 600, 675, 750,
. . . m. For a better visual reference, the possible sizes of Li for each
element size are indicated in the figure by small dots. The unfilled
symbols depict configurations in which the rupture did not sponta-
neously propagate and the filled symbols depict configurations with
successful initiation.

We fit the numerical results for successful initiation with an ex-
ponential model Li = a · eb · h depicted by the solid lines (a = 733.5,

Figure 5. Comparison of the x-component of slip rate obtained with the FE
and ADER-DG methods with different discretizations using the elliptical
initiation zone. Embedded images show details of peak amplitudes and
rupture times.

b = 5.725 × 10−4 and a = 1380, b = 1.258 × 10−4 for S = 0.1 and
2.0, respectively).

3.4.2 Convergence for the ADER-DG method

For convergence test of the ADER-DG method we use O3, O4 and
O5 accuracy with the element size h = 300 m, and O3, O4, O5
and O6 accuracy with element size h = 200 m. For S = 2.0 we also
test O5 accuracy with the element size h = 100 m. This mixture
of different orders of accuracy and element sizes allows to reduce
the number of simulations needed to determine the critical size. We
analyse this set of simulations in terms of the parameter ν:

ν = h
3
√

dof
, (5)

where dof is the number of degrees of freedom. For the ADER-DG
method

dof = O · (O + 1) · (O + 2)

6
. (6)

Since ADER-DG is applied on an unstructured tetrahedral mesh,
prepared such that the elements honour the shape and size of the

Table 2. Quantitative comparison of the FE and AFER-DG solutions for square and elliptical initiation zones.

Square initiation zone Elliptical initiation zone

R1 R2 R1 R2

�u̇max �Tr �u̇max �Tr �u̇max �Tr �u̇max �Tr

ADER-DG O4 – FE h = 100 m 0.60 0.102 0.18 0.056 0.89 − 0.044 −0.54 − 0.107
ADER-DG O6 – FE h = 25 m 0.08 0.039 − 0.35 0.031 0.35 0.013 −0.35 0.005
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Figure 6. Illustration of the effect of incorrect size of the initiation zone
(for example, due to incorrect implementation of the square initiation
zone in FE method). h is element size, Leff

i is the effective half-length of
the initiation zone and impl. indicate implementation (a) or (b), see Fig. 1.
Note that the desired half-length of square initiation zone is 900 m.

Figure 7. Convergence of the critical size of initiation zone using FE (left-
hand side) and ADER-DG (right-hand side) methods. Filled symbols indi-
cate successful initiation, unfilled symbols indicate unsuccessful initiation,
small dots indicate numerically possible models in FE mesh. h is element
size, ν = h / 3

√
dof .

initiation zone as precisely as possible, the elements inside and
near the initiation zone may be very small. Therefore, it is gener-
ally possible to resolve very small changes in the initiation zone
size. However, for efficiency reasons we fix the increments of the
initiation zone variations to 50 m.

The convergence results for ADER-DG are shown in the right-
hand column of Fig. 7. We fit the numerical results with a power
law of the form Li = a · νb + c, depicted by the solid lines
(a = −4.684 × 10−8, b = 4.369, c = 756.6 and a = −1.121,
b = 1.104, c = 1408 for S = 0.1 and 2.0, respectively).

3.4.3 Comparison and discussion of the FE and ADER-DG results

Our results in Fig. 7 indicate that the critical sizes of the initiation
zone in the FE method converge to the same values as in the ADER-
DG method. For the low-strength case, S = 0.1, our FE results show
that the critical size of the initiation zone, Li, converges to 734 m,
while that of ADER-DG converges to 757 m. The small differ-
ence of only 23 m is below the chosen increment of the initiation
zone size in the ADER-DG simulations (i.e. 50 m). Similarly, for
the high-strength case, S = 2.0, the FE and ADER-DG results con-
verge to 1380 and 1408 m, respectively. The difference is 28 m,
again, below the chosen increment of the initiation zone size in the
ADER-DG simulations. We therefore conclude that the critical sizes
of the initiation zone converge in both methods to the same values.

Even though the convergence to the same critical size is the
most important result, the convergence characteristics of the FE
and ADER-DG methods are very different. The critical size from
the FE simulations is slightly decreasing with decreasing h (i.e.
with increasing accuracy). For example, for S = 0.1 and Li = 750 m
initiation was unsuccessful with the element size h = 100 m but
was successful with element size h = 75 m. We conjecture that
this behaviour is related to higher accuracy achieved with smaller
elements. With finer spatial discretization the rupture-tip stress con-
centration is better resolved leading to narrower slip-rate peaks with
larger amplitudes (as seen in Figs 4–6) and, consequently, a smaller
initiation zone is sufficient for successful initiation.

There are two interesting features observed in the ADER-DG
results: (i) very different convergence rates in the low- and high-
strength cases and (ii) increase of the critical size with increasing
accuracy. The critical size obtained by the ADER-DG method con-
verges much faster for S = 0.1 than for S = 2.0 case. Our interpre-
tation is that this is due to a step in the initial stress at the rim of
the initiation zone (i.e. difference between τ i

0 inside the initiation
zone and τ 0 outside). The difference is 1.7 and 12.3 MPa in the low
(S = 0.1) and high (S = 2.0) strength cases, respectively. The high-
order ADER-DG method is more sensitive to the abrupt change
in the high-strength case than the low-order FE method. However,
we do not have a conclusive explanation for the second observed
feature. We expect that the observed behaviour is a consequence of
joint influence of numerical artefacts, numerical dispersion, numer-
ical diffusion and non-linear character of the initiation process.

4 T H E C R I T I C A L S I Z E O F T H E
I N I T I AT I O N Z O N E

It is useful to have an estimate of the critical size of the initiation
zone for designing a dynamic-rupture simulation. However pub-
lished estimates so far do not provide general rules for designing
3-D numerical simulations. In this section, we analyse the critical
size for initiation zones of different shapes as a function of the
strength parameter S, and compare our numerical results with pub-
lished estimates of the critical size. The comparison motivates the
derivation of new estimates.

4.1 Numerical simulations

We perform extensive numerical simulations to study the critical
size of the square, circular and elliptical initiation zones (with the
aspect ratio 4/3) for a range of the strength parameter S from 0.1 to
2.0. To obtain different strengths S, we consider various values of the
initial traction and fixed μs, μd and τ n (Table 1). The initial traction

 at K
ing A

bdullah U
niversity of Science and T

echnology on February 9, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Initiation of sustained slip-weakening ruptures 895

inside the initiation zone was set as τ i
0 = τs + 0.005 · (τs − τ0) (i.e.

the overstress is 0.5 per cent of the strength excess).
We present the size of the initiation zone as a non-dimensional

half-length,

L init = Li/L fric, (7)

or a non-dimensional area,

Ainit = Ai/L2
fric. (8)

Here, Lfric = μ Dc/(τ s − τ d) is a characteristic length scale intro-
duced by the slip-weakening process (e.g. Dunham 2007), Li is the
effective half-length of the initiation zone (side for square, radius
for circular and a major semi-axis for elliptical initiation zone) and
Ai is the effective area of the initiation zone.

Our main interest is to quantify the critical size of the initiation
zone that leads to self-sustained rupture propagation. Therefore,
we consider initiation successful if the rupture propagates over the
whole fault plane. Otherwise the initiation is considered unsuccess-
ful. Note that the area of the unsuccessfully initiated ruptures is
significantly smaller than the total area of the fault. Consequently,
our results are not biased by the finite fault size. For example, the
slightly subcritical rupture for S = 2.0 with square initiation zone
and h = 100 m ruptured less than 10 per cent of the entire fault
area.

4.1.1 Numerical results for the critical half-lengths

Fig. 8 shows non-dimensional critical half-lengths for three con-
sidered shapes as a function of the strength parameter S. The half-
lengths are obtained from numerical simulations for h = 100 m
and h = 50 m. The shapes of the initiation zone are indicated by
different symbols. Filled and unfilled symbols depict successful and
unsuccessful initiation, respectively. We approximate the numerical
results by a power law, Linit = a · Sb + c, to simplify the comparison
of the results for different element sizes as well as for different
shapes of the initiation zone. Fig. 8 indicates that for a fixed S the
critical half-length of the initiation zone is smallest for the square
and largest for the elliptical initiation zone.

4.1.2 Numerical results for the critical area

Fig. 9 presents the same data as shown in Fig. 8, but in terms of the
non-dimensional area. We again approximate the numerical results
by a power law, Ainit = a · Sb + c. The results for h = 50 m indicate
that the initiation area for the three considered shapes coalesce into
a single power-law behaviour, depicted by the solid black line:

Ainit = 1.75 · S2.81 + 3.82. (9)

The differences between the critical areas obtained with different
shapes of the initiation zone visible in Fig. 9(b) are, in fact, expected
considering the results of convergence of the critical half-length in
the case of the square initiation zone.

4.1.3 The resolution of the half-length and area of the initiation
zone

Interestingly, the S-dependence of the resolution of the initiation
zone seems to change when results are presented as non-dimensional
half-length and non-dimensional area (compare Figs 8 and 9). To
explain this let us assume the square initiation zone in an FE mesh
with element size h. The resolution of Li is h/2 and it is indepen-
dent of S (consequently, resolution of non-dimensional Linit is also
independent of S). The area of the initiation zone with half-length
Li is 4 L2

i . Similarly, for half-length Li + h/2 (where h/2 is the
smallest increment of the half-length) we obtain area 4 (Li + h/2)2.
The resolution of the area of the initiation zone is the difference
between these areas, that is, 4 (Li + h/2)2 − 4 L2

i = 4 h Li + h2.
We see that the resolution of the area depends on Li, which depends
on S, and consequently the resolution depends on S. Moreover, Li

is greater for larger S, leading to poorer resolution for larger S.

4.1.4 Discrete representation of the initiation zone

Comparing critical radii for lower S in Fig. 8 we observe significant
change between h = 100 m and h = 50 m cases. However, we do not
observe such change if results are presented as area (Fig. 9). This
indicates that the larger radius only compensates poor representation
of the circular shape in the mesh with h = 100 m and that the area of
the initiation zone is less sensitive to imperfections in geometrical
representation of the initiation zone due to numerical discretization.

Figure 8. The non-dimensional critical length of the initiation zone Linit (eq. 7)—half-length for square, radius for circular and major semi-axis for elliptical
initiation zone—as a function of non-dimensional strength parameter S (eq. 3). Comparison of numerical results obtained with element size h = 100 m (a) and
h = 50 m (b). Filled symbols indicate successful and unfilled symbols indicate unsuccessful initiation. The shape of the initiation zone is indicated by different
symbols. Numerical results were approximated by power laws indicated by grey lines.
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Figure 9. The non-dimensional critical area Ainit (eq. 8) of the square, circular and elliptical initiation zones as a function of non-dimensional strength
parameter S (eq. 3). Comparison of numerical results obtained with element size h = 100 m (a) and h = 50 m (b). Filled symbols indicate successful and
unfilled symbols indicate unsuccessful initiation. The shape of the initiation zone is indicated by different symbols. Numerical results are approximated by the
power law, indicated by grey lines. Numerical results for h = 50 m and for all shapes of the initiation zone are also approximated by one power law depicted by
black line (also plotted in (a) as a reference). Note that the approximate line for ellipse (dotted grey) coincides with the average line (solid black) for h = 100 m.

4.1.5 Implications

The previous discussion (in Sections 4.1.1, 4.1.2 and 4.1.4) and
Figs 8 and 9 suggest that for a fixed overstress the initiation is
not controlled by the half-length or shape, but rather by the area
of the initiation zone. To confirm this hypothesis we consider two
orientations of the elliptical initiation zone. In the first case, the
major-semi axis points into the in-plane direction, reflecting the fact
that in 2-D the critical half-length for the in-plane mode is greater
than for the antiplane mode. In the second case, the major-semi
axis points into the antiplane direction, and consequently, the half-
length of the initiation zone is smaller in the in-plane direction than
the critical half-length for the in-plane mode. For both orientations
we consider an ellipse with the same aspect ratio. Simulations (for
S = 1.0 only) provide exactly the same results for the critical area
for both orientations, indicating that the half-length in the in-plane
direction may be smaller than the critical half-length from 2-D
models, as long as the initiation area is larger than the critical area.
The numerical results thus support our hypothesis.

In the limit, if one axis of the overstressed asperity tends to in-
finity, the 3-D problem reduces to a 2-D problem, for which the
criterion for runaway rupture involves a critical length. Hence, for
very elongated initiation zones there is a critical length for the short
axis, but not a critical area (Uenishi 2009). Our current results,
including different shapes and aspect ratios of the overstressed as-
perity up to 4/3, show that the shape and aspect ratio have only
a weak effect on the critical area if the aspect ratio is close to 1.
However, we conjecture that also the effects of the aspect ratio could
vary with S (e.g. similarly to the critical area depending on S). Be-
cause an initiation zone with aspect ratio close to 1 is important for
most practical purposes, we leave it to future work to investigate in
details the effects of the aspect ratio.

We also conjecture that our hypothesis does not apply for irreg-
ular shapes of the initiation zone. For instance, Ripperger et al.
(2007) studied initiation with irregularly shaped initiation zones.
Their results indicate that for successful initiation the radius of the
inscribed circle of the initiation zone has to be greater than the 2-D
antiplane critical half-length by Uenishi & Rice (2003) (see eq. 16).

Figs 8 and 9 also show that for S ≤ 0.75 the critical size of the
initiation zone appears to be independent of S, while for S ≥ 1.0 it

increases with S. We will comment on this behaviour in more detail
in Section 5.2.

4.2 Overview of existing theoretical estimates of the
critical size of the initiation zone

Different estimates of the critical nucleation size have been derived
for 2-D as well as 3-D problems using different assumptions. To
simplify the later expressions we introduce the critical half-length
(e.g. Day et al. 2005)

L0 = μ

π

τs − τd

(τ0 − τd )2
Dc (10)

and weakening rate (e.g. Uenishi & Rice 2003)

W = τs − τd

Dc
. (11)

Andrews (1976a,b) determined the critical crack size in 2-D un-
der the assumption of uniform stress drop, by deriving the half-
length of a crack in static equilibrium that balances static energy
release rate and fracture energy:

L II
A = 1

1 − ν
L0 (12)

and

L III
A = L0 (13)

for mode II (in-plane) and mode III (antiplane), respectively. Fol-
lowing the same approach and again assuming uniform stress drop,
Day (1982) derived the critical radius of a circular crack in 3-D, for
a Poisson’s ratio of 1/4,

L D = 7π 2

24
L0. (14)

The estimates by Andrews (1976a,b) and Day (1982) differ only by
a material-dependent factor but the dependency on S is the same
(determined by L0).
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Uenishi & Rice (2003) determined the minimum half-length re-
quired to initiate dynamic rupture in 2-D by a gradually increasing
and spatially concentrated stress load:

L II
U2

∼= 0.579
1

1 − ν

μ

W
(15)

and

L III
U2

∼= 0.579
μ

W
(16)

for modes II and III, respectively. Subscript 2 indicates that esti-
mates were derived for a 2-D problem. Uenishi (2009) extended the
approach to 3-D and presented analytical formulas for the critical
values of the major and minor semi-axes of an elliptical initiation
zone aligned with the mode II and III directions, respectively:

La
U3

∼= 0.624 C(ν)
1

1 − ν

μ

W
(17)

Lb
U3

∼= 0.624 C(ν)
μ

W
. (18)

Here

C(ν) = E[
√

ν(2 − ν)] + (1 − ν)K [
√

ν(2 − ν)]

2 − ν
, (19)

where K(k) and E(k) are complete elliptic integrals of the first and
second kind, respectively:

K (k) =
∫ 1

0

1√
(1 − t2)(1 − k2t2)

dt, (20)

E(k) =
∫ 1

0

√
1 − k2t2

(1 − t2)
dt. (21)

These formulas are valid for a particular value of the aspect ratio
of the critical zone, a/b = 1/(1 − ν). Uenishi (2009) presented
numerical results of critical lengths for a wide range of values of
the aspect ratios and Poisson’s ratio ν = 0.25.

Note that estimates by Andrews (1976a,b) and Day (1982) de-
pend on the initial traction τ 0, whereas estimates by Uenishi &
Rice (2003) and Uenishi (2009) do not depend on the background
initial traction τ 0. This is likely a consequence of the assumptions
used to derive the critical half-lengths. Andrews and Day assumed
a pre-existing crack with uniform initial stress and a breakdown
zone small compared with the crack size, while Uenishi & Rice
(2003) and Uenishi (2009) included gradual loading of the fault
with a corresponding aseismic slip, non-uniform initial stress and
a breakdown zone occupying the whole crack. More importantly,
they did not address the question of whether or not the rupture be-
comes indefinitely self-sustained after initiation. Their critical size
for rupture initiation does not necessarily imply a critical size for
a runaway rupture (e.g. Viesca & Rice 2012) but does provide a
lower bound for it. None of the situations treated by these authors
completely matches the overstressed-asperity initiation procedure
considered here. Next, we compare their critical size estimates with
results of numerical simulations.

4.3 Comparison of the numerical results with the
theoretical estimates

Our numerical results indicate that the critical area does not depend
on the shape of the initiation zone. Therefore, it is natural to choose
the critical area to compare the theoretical estimates with the nu-
merical results. It is straightforward to obtain the critical area for

estimates based on analysis of a 3-D problem because the shape of
the initiation zone is explicitly assumed. However, for 2-D estimates
we have to assume a shape. Different critical lengths for modes II
and III, derived using the same approach, naturally suggest an el-
liptical shape. Having only circular (Day’s estimate) and elliptical
(all other estimates) shapes we can define a general formula for the
total area of the initiation zone in the following form:

Ac = π La
c Lb

c . (22)

The precise definitions of La
c and Lb

c change according to the con-
sidered estimate. Day (1982) assumed a circular crack and con-
sequently La

c = Lb
c = L D . Uenishi (2009) considered an elliptical

initiation zone and naturally La
c = La

U3 and Lb
c = Lb

U3. Considering
the approach used for obtaining estimates for modes II and III, we
can combine (a) the estimate by Andrews (1976a) with that by An-
drews (1976b) and obtain La

c = L II
A and Lb

c = L III
A ; (b) the estimates

by Uenishi & Rice (2003) and obtain La
c = L II

U2 and Lb
c = L III

U2.
Comparing the non-dimensional estimates of critical area with

our numerical results in Fig. 10(a) we find that none of these esti-
mates is consistent with our findings over the entire S-range con-
sidered. The critical area obtained from our numerical simulations
increases with S, whereas the estimates by Uenishi & Rice (2003)
and Uenishi (2009) are S-independent. Even though the critical area
predicted by estimates by Day (1982) and Andrews (1976a,b) in-
creases with S, we observe significant differences compared with
our numerical results. Moreover, comparing eqs (12), (13) and (14),
we find that the estimates by Andrews and Day differ only by a
(material dependent) multiplicative factor whereas the dependence
on S is determined by L0, eq. (10). Consequently, the corresponding
critical areas are proportional to the critical area for a circular crack
with radius L0, that is, Ac ∼ π L2

0. Comparison with numerical re-
sults suggests that introduction of another multiplicative factor to
π L2

0 will not lead to sufficient agreement with our numerical results.
Although none of the estimates is consistent with our numerical

results over the entire S-range considered in this study, Fig. 10(a)
shows very good agreement of the estimate by Uenishi (2009) with
our results for S � 0.75. In fact, if we look at the detail in the
zoomed-in image, we see that the estimate is in excellent agreement
with numerical results for the elliptical shape. (The differences
between square, circular and elliptical shapes are due to different
convergence characteristics.) The consistency of this estimate with
numerical results for low S is expected. The theory predicts the
minimum size of an overstressed asperity that allows for initial
rupture acceleration, regardless of what happens to the rupture later.
However, if the background stress is high enough (S is low enough)
the available elastic energy is sufficient for the initial acceleration
to induce a runaway rupture. On the other hand, if the background
stress is low (S is high) the near critical ruptures stop spontaneously
at a distance much larger than the process zone size, and the problem
becomes closer to one that can be idealized in the context of small-
scale yielding.

Because none of the theoretical estimates sufficiently agrees with
our numerical results for the high-strength configurations, we de-
rive a new estimate for the nucleation area. We develop two new
theoretical estimates (see Appendix A) for the high-strength con-
figurations

A1 = (3π )3

211

τ0 − τd

τ i
0 − τ0

(τs − τd )2

(τ0 − τd )4
μ2 D2

c (23)
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Figure 10. Comparison of theoretical estimates of the non-dimensional critical area Ainit (eq. 8) as a function of the non-dimensional strength parameter S
(eq. 3) with our numerical results (for element size h = 50 m; depicted by symbols as used in Fig. 9). (a) Comparison with previous estimates. Note that
estimates based on analysis of a 3-D problem are shown by thick lines while estimates based on analysis of a 2-D problem are shown by thin lines. (b)
Comparison with estimates consistent with numerical results—our new estimates, A1 (eq. 23) and A2 (eq. 24), and estimates by Uenishi (2009). The range of
validity for each estimate is indicated by black thick lines.

and

A2 = π 3

16

1

f 4
min

(τs − τd )2

(τ0 − τd )4
μ2 D2

c , (24)

where fmin in eq. (24) is a minimum of the function

f (x) = √
x

[
1 + τ i

0 − τ0

τ0 − τd

(
1 −

√
1 − 1/x2

)]
. (25)

Deriving fmin analytically does not seem to yield a compact expres-
sion, therefore we evaluate it by numerical minimization.

Fig. 10(b) shows even better agreement between both our new
estimates and the numerical results, compared with other theoretical
estimates shown in Fig. 10(a). The advantage of estimate A1 is
its compact analytical expression, however, it can be used only as
an approximation to estimate A2. On the other hand, even though
estimate A2 has a more complex form, it is based on more complete
theoretical basis and its agreement with our numerical results for
S � 0.75 is excellent. Thus, we conclude that the most rigorous
theoretical estimate for the whole S range is

AC = max(AU , A2) (26)

where AU is critical area estimated following Uenishi (2009), that
is, using eqs (17), (18) and (22). In principle, we can determine
the point where AC changes from AU to A2 by solving the equa-
tion AU = A2. However, because fmin implicitly depends on S, the
equation does not have an analytical solution. Solving AU = A2

numerically yields S ∼= 0.72. Note that, if we rewrite eqs (23) and
(24) in terms of fracture energy Gc, the estimates A1 and A2 apply
to any friction law with finite fracture energy only if the rupture is
crack-like because assumption (iii) in Appendix A is not valid for
pulse-like ruptures. However, Uenishi’s estimates are valid only for
linear slip-weakening friction (Rice & Uenishi 2010).

5 T H E E F F E C T O F OV E R S T R E S S
I N S I D E T H E I N I T I AT I O N Z O N E

We now turn to a detailed analysis of overstress in the initiation
zone. In the previous section we examined the critical area for a
fixed, very small overstress. Intuitively, a smaller overstress could
lead to a larger critical area and a larger overstress could lead to
a smaller critical area. Therefore, we examine how the overstress
affects the critical area and analyse its effects on subsequent rupture
propagation.

5.1 Critical area assuming overstress smaller than
0.005 · �τE

In Section 4, we assessed the critical size of the initiation zone as-
suming the fixed overstress of 0.5 per cent of the strength excess (i.e.
�τ 0 = 0.005 · �τE). The strength excess increases with increasing
S (as a consequence of fixed τ s and τ d). Therefore, the evaluated
overstress (in Pa) also increases with increasing S. In particular,
the overstress is 8 333 and 61 111 Pa for S = 0.1 and 2.0, respec-
tively. We perform numerical simulations with the fixed overstress
�τ 0 = 50 Pa to examine whether application of a smaller overstress
leads to a larger critical area. We perform simulations only using
the square initiation zone and the baseline grid spacing, that is,
h = 100 m.

As shown in Fig. 11, both levels of overstress lead to the same
critical area for five considered S values. Fig. 11 also shows that
critical areas estimated by A1 and A2 (we do not include the es-
timate by Uenishi (2009) in this comparison because it does not
include the overstress) for both levels of overstress are nearly indis-
tinguishable (relative difference of the critical area for S = 2.0 is
only 0.5 per cent). Thus, both the numerical results and the theoreti-
cal estimates indicate that the overstress 0.5 per cent of the strength
excess is small enough, while smaller values do not lead to a sig-
nificantly larger initiation area.
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Figure 11. Comparison of non-dimensional critical area Ainit (eq. 8) as
a function of the non-dimensional strength parameter S (eq. 3) obtained
from numerical simulations for overstress 0.5 per cent of strength excess
(indicated by left-pointing triangles) and 50 Pa (indicated by right-pointing
triangles). Filled symbols indicate successful and unfilled symbols indi-
cate unsuccessful initiation. The left- and right-pointing triangles at the
same position form a hexagram. Numerical results are also compared with
the estimates A1 (dashed line) and A2 (solid line). Note that we do not in-
clude the estimate by Uenishi (2009) in this comparison because it does not
include the overstress.

5.2 Critical area assuming overstress larger than
0.005 · �τE

To examine how larger overstress affects the critical area of the
initiation zone we assume a smaller initiation area and search for
values of critical overstress that still lead to sustained dynamic
rupture. We progressively change the area of the initiation zone as
allowed by the mesh, starting with the area obtained for overstress
0.005 · �τE. For each area we gradually increase the overstress
until we observe successful initiation. For efficiency reasons we fix
the increments of the overstress to 0.05 · �τE, that is, 5 per cent of
the strength excess. We again choose to perform simulations only
using the square initiation zone and the baseline grid spacing, that
is, h = 100 m.

Symbols in Fig. 12 show how the critical overstress varies with
the initiation area. Different symbols represent five considered val-
ues of the strength parameter. These numerical results suggest that

for achieving successful initiation a smaller initiation area may be
compensated by a larger overstress.

For low S values (0.1 and 0.5) and small overstress values (say,
below 50 per cent of �τE) the critical area hardly depends on S. This
is consistent with our findings in Fig. 10, but we further observe here
that the minimum critical area depends on the amount of overstress.
For larger overstress values, the critical area depends appreciably on
S (as indicated by differences between S = 0.1 and 0.5 solutions for
larger overstress, say, above 50 per cent of �τE). Consequently, the
critical area for larger overstress depends on S in the entire S-range
considered here.

Even though differences between the critical overstresses are
small, compared with differences between the areas for S = 0.5 and
1.0, they increase with decreasing initiation area. This behaviour
indicates that in the limit of no overstress the critical area for S = 0.1
is the same as for S = 0.5 and the critical area for 0.005 · �τE and
S � 0.75 (Fig. 9) varies with S, but its variation is too small to
be captured by the h = 50 m elements. In fact, considering the
differences between the areas for S = 0.1 and 0.5 shown in Fig. 12
we expect that the variations are negligible.

In addition to these numerical results we also analyse estimates
of the critical overstress given by A1 and A2. For the estimate A1 it
is straightforward to derive an expression for τ i

0 and for the critical
overstress �τ 0 as a function of the critical area, A:

�τ0 = (3π )3

211

τ0 − τd

A

(τs − τd )2

(τ0 − τd )4
μ2 D2

c + τ0 − τs . (27)

However, such an approach is not applicable for A2 because it does
not have analytical form. Therefore, we insert the critical overstress
obtained from numerical results into eq. (24) to obtain an estimate
of the critical area.

For S ≥ 1.0, Fig. 12 indicates good agreement of the critical
overstress obtained using estimates A1 and A2 (depicted by lines)
with our numerical results. Estimates A1 are plotted for S ≥ 0.5 and
estimates A2 for S ≥ 1.0, in agreement with validity ranges observed
in Section 4. The agreement of estimate A1 is good for S ≥ 1.0, but
for S = 0.5 the agreement is rather poor. We thus conclude that
estimate A1 should not be used for S � 0.75 if �τ 0 > 0.005 · �τE.
Although the agreement between estimate A2 and our numerical
results decreases with increasing overstress, the agreement is better
than that for estimate A1.

Although a theoretical estimate of the critical area for S ≤ 0.75 as
a function of overstress is not attempted here, note that for S ≤ 0.75

Figure 12. The critical overstress �τ 0 normalized by the strength excess �τE as a function of non-dimensional area of initiation zone, Ainit. Numerical
simulations were performed for five values of strength parameter S, as indicated by different symbols. Filled symbols indicates successful initiation while
unfilled symbols indicates unsuccessful initiation. The numerical results are compared with the estimates A1 (grey lines) and A2 (black lines).
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the critical area from numerical simulations with higher overstress is
systematically smaller than the estimate by Uenishi (2009). Results
presented by Bizzarri (2010) for S = 0.4 and �τ 0/�τE = 0.0546
indicate a critical area of 1.452 · π · L II

A · L III
A , significantly smaller

than AU. This is consistent with the decrease of critical area as a
function of increasing overstress shown in Fig. 12.

We alse note that Bizzarri (2010) unfortunately did not correctly
present results of Galis et al. (2010) who determined a critical ma-
jor semi-axis length of 1.36 · L II

A for an elliptical initiation zone
when S = 0.5. Although they made no generalization to other S
values, Bizzarri (2010) interpreted their results as suggesting a crit-
ical length valid for supershear ruptures in general. He found his
interpretation to be challenged by the critical length of 1.45 · L II

A

he determined for S = 0.4. Here we found that the critical size is
not proportional to Andrews’ length L II

A but, for supershear rup-
tures with S � 0.75, it is close to the S-independent length La

U3.
The critical lengths of 1.36 · L II

A for S = 0.5 (Galis et al. 2010)
and 1.45 · L II

A for S = 0.4 (Bizzarri 2010) are not in contradiction;
both are actually consistent with the results of the present study and
consistent with Uenishi’s (2009) theory at low overstress.

Our numerical results as well as theoretical estimates indicate
that for successful initiation the larger overstress may compensate
smaller initiation area. However, a detailed analysis of the effects of
higher overstress with smaller initiation area on the dynamic rupture
evolution is necessary for practical applications.

5.3 Effects of initiation by a smaller area and higher
overstress on rupture propagation

Section 5.2 shows that for the successful initiation with an initi-
ation area smaller than that for �τ 0 = 0.005 · �τE one can use
a higher overstress. This may be useful for practical applications,
for example, it may allow initiation with smaller initiation zone in
high-strength configurations, where a critical size for small over-
stress tends to be very large. However, before drawing such a con-
clusion, it is necessary to verify the effects of such an initiation on
the subsequent rupture propagation.

First, we examine effects caused by increasing overstress from
0.005 · �τE to 0.05 · �τE, because in the worst case, the criti-
cal overstress obtained from the numerical simulations (Fig. 12)
may be almost 0.05 · �τE larger than the minimum required over-
stress for a given initiation area. We consider only two limiting
cases, with the strength parameter S = 0.1 and S = 2.0, and anal-
yse rupture time, rupture speed, slip rate and traction. Our analysis
(Appendix B) shows only negligible differences for S = 0.1. The
level of agreement for S = 2.0 is also acceptable, however, the com-
parison reveals notable differences, particularly in rupture speed at
smaller distances from the hypocentre. The results thus confirm that
the increased overstress (in the considered range) does not signifi-
cantly affect the solutions.

Taking our previous results into account we analyse the effects of
higher overstress scaled according to the chosen initiation area by
examining rupture time, rupture speed, slip rate and traction for the
low-strength (S = 0.1) and high-strength (S = 2.0) configurations.
For each configuration we consider four values of overstress. For
each value of overstress we perform two simulations: (1) ‘slightly
overcritical’—with the initiation area barely larger than the criti-
cal area for considered overstress, that is determined according to
results in Fig. 12; (2) ‘supercritical’—with the initiation area corre-
sponding to small overstress, that is, determined according to results
in Fig. 9.

The detailed analysis (Appendix C) shows that the slightly over-
critical initiation does not have essential effects on rupture propaga-
tion, even if the overstress is rather large. The analysis for the low-
strength configuration shows small differences in rupture speed near
the initiation zone. However, for the high-strength configuration we
observe stronger effects. For the supercritical case we observe a
supershear transition, significantly larger peak slip-rate amplitudes
as well as significant changes in shape and amplitude of the stress
variation caused by the hypocentral S wave. Yet, if we set the initi-
ation area equal to the critical value for the (higher) overstress we
observe different rupture speed only in the vicinity of the initia-
tion zone, while differences in shape and amplitude of the stress
variation caused by the hypocentral S wave are also significantly
smaller.

Therefore, our results suggest that the initiation area and over-
stress close to their critical values do not lead to strong artefacts,
even if the overstress is large.

6 D U R AT I O N O F T H E I N I T I AT I O N

The initiation of rupture propagation by an overstressed asperity
is not an instantaneous process. Although the overstress causes
immediate non-zero slip-rate inside the initiation zone, building-
up sufficient stress for rupture to propagate outside its initiation
zone takes some time. Moreover, the initiation has to be sufficiently
strong for supporting rupture to propagate far enough to become
fully spontaneous. From rupture initiation until its fully spontaneous
propagation, the dynamic process is controlled by the artificial ini-
tiation. Because we are typically interested in earthquake dynamics
it is useful to minimize duration of the initiation to make numerical
simulations more efficient. This can be achieved by either a higher
overstress or a larger initiation area. However, if they are too large
they can affect resulting self-sustained dynamic rupture. Therefore,
we examine relations between the initiation area, overstress and
duration of the initiation in order to find optimal parameters.

The duration of the initiation can be defined as time from the
beginning of the simulation until the moment when rupture propa-
gation is no longer controlled by the initiation procedure. However,
it is not straightforward to unambiguously define this instant in time,
and consequently it is complicated to define the duration of the ini-
tiation in the absolute sense. On the other hand, a difference in the
rupture times of two solutions for different initiation parameteriza-
tions at a location far enough from the hypocentre can be attributed
to differences in the duration of the initiation. Thus, differences in
the rupture times in our numerical simulations can be considered a
relative measure of the initiation duration with respect to a reference
solution. We define the relative difference in the rupture time as

�Tr = Tr − T ref
r

Tprop
× 100, (28)

where Tr is the rupture time (i.e. the time when slip rate first time
exceeds 1 mm s−1) 10 km ≈ 14.3 · Lfric away from the hypocentre
in the in-plane direction, T ref

r is the corresponding reference rup-
ture time and Tprop is the time the rupture needs to reach the fault
boundary in the in-plane direction. We use Tprop = 3.5 s for S = 0.1
and Tprop = 9 s for S = 2.0. We quantitatively compare the effects
of a larger initiation zone or overstress using relative difference in
peak slip rate,

�u̇max = u̇max − u̇ref
max

u̇ref
max

× 100, (29)
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Figure 13. Illustration of effects of size of the initiation zone and overstress on the duration of the initiation and peak slip rate amplitude for low-strength
configuration (a) and high-strength configuration (b). �Tr is the relative difference in rupture time with respect to reference solution, �u̇max is the relative
difference in peak slip rate with respect to the reference solution.

where u̇max is the peak slip rate at the same location as specified
above and u̇ref

max is the peak slip rate of the reference solution.
To analyse effects of the larger initiation area and overstress sep-

arately, we consider (i) several values of the initiation area with
the fixed overstress �τ 0 = 0.005 · �τE and (ii) several values of
the overstress with the fixed initiation area A0

init, that is, the criti-
cal area for overstress �τ 0 = 0.005 · �τE. We again consider the
low-strength (S = 0.1) and high-strength (S = 2.0) configurations,
square initiation zone and baseline element size h = 100 m. Accord-
ing to our definition of the numerical artefacts, we choose solutions
obtained with the smallest initiation area, A0

init, and the smallest over-
stress, �τ 0 = 0.005 · �τE as reference solutions. Here we present
a quantitative summary of the results while detailed comparisons
(including rupture time, rupture speed, slip rate and traction) of the
six solutions from each set are presented in Appendix D.

For the low-strength configurations (Fig. 13a) we observe that
although a larger initiation area may be used to shorten the duration
of the initiation, application of a higher overstress leads to shorter
duration and to smaller artefacts. As indicated in Appendix D, an
initiation area larger than 2 × A0

init leads to significant changes of
rupture shape. At the same time, it does not lead to additionally
shortened duration. On the other hand, we observe that application
of the higher overstress does not only lead to better relative speed-up,
compared with using a larger initiation area, but also to significantly
smaller �u̇max. Moreover, we do not observe changes in rupture
shape. Fig. 13(a) shows that �Tr saturates for �τ 0/�τE > 1.0, that
is, the higher overstress does not lead to further shortening of the
duration. Therefore, our analysis for the lower-strength configura-
tions suggests that the overstress up to �τ 0/�τE = 1.0 efficiently
shortens the duration of the initiation without introducing artefacts
in subsequent rupture propagation.

For the high-strength configurations we find that applying a larger
initiation area to achieve shorter initiation duration is preferable.
Fig. 13(b) reveals strong gradients in �u̇max for the larger initiation
area and overstress. Considering �u̇max � 5 per cent a reasonably
small error we find that we can use an initiation area Ainit � 1.2 ×
A0

init or overstress �τ 0/�τE � 0.3. While the detailed analysis
(Appendix D) indicates that the larger initiation area or the larger
overstress within these limits lead to comparably small artefacts,
the larger overstress leads to more pronounced shortening of the

duration than the larger initiation area. However, taking into account
the strong gradient in �u̇max for �τ 0/�τE > 0.3, we conclude that
for the higher-strength configurations it is preferable to apply the
larger initiation area, up to Ainit ∼ 1.2 × A0

init, to efficiently shorten
the duration of the initiation without affecting spontaneous rupture
propagation.

For an elliptical initiation zone with the aspect ratio 1/(1 − ν)
Bizzarri (2010) found that a major semi-axis length equal to LD

by Day (1982) leads to results closest to those obtained with the
forced-rupture initiation procedure for S = 0.4 and 2. He defined the
length as the ‘optimal’ initiation length. In contrast, in our definition
the optimal length minimizes initiation duration while preserving
similarity to slightly overcritical ruptures. Bizzarri’s (2010) optimal
area, π · L2

D/(1 − ν), is significantly larger than the critical area for
self-sustained rupture, as seen in Fig. 10, and generally larger than
our optimal area.

7 C O N C LU S I O N S

We performed an extensive parametric study to estimate critical and
optimal parameters of the initiation zone in spontaneous dynamic
rupture simulations using a linear slip-weakening friction law and
the overstressed-asperity initiation procedure.

Solutions obtained with the FE and ADER-DG methods for the
square and elliptical initiation zones are in good agreement. The
critical size of the initiation zone obtained from the FE simulations
and that obtained from the ADER-DG simulations converge to the
same value. Both methods thus provide consistent results. Subse-
quently, we applied the computationally more efficient FE method to
perform extensive numerical simulations for this parametric study.

We found that the area, not the half-length, of the initiation zone
controls the initiation of spontaneous rupture propagation in 3-D.
Our findings indicate that a particular shape of the initiation zone
is less important if its aspect ratio is ∼1. However, in the limit
of infinite aspect ratio the 3-D problem reduces to 2-D problem,
for which nucleation is then controlled by a critical half-length.
For successful initiation with irregularly shaped initiation zones, as
indicated by Ripperger et al. (2007), a radius of a circle inscribed in
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the initiation zone has to be larger than the critical half-length for
mode III by Uenishi & Rice (2003).

Our numerical results indicate that for S � 0.75 the critical area
is either independent of S or varies only marginally but the finite
resolution of our simulations does not allow distinguishing the two
cases. In this range of S and for a small overstress (e.g. �τ 0 = 0.005
· �τE), the estimate by Uenishi (2009), eqs (17)–(22), may be used
for assessing the critical area of the initiation zone. Since none of the
previously published estimates seem to be applicable for S > 0.75,
we propose a new estimate, A2, eqs (24) and (25), which is in very
good agreement with our numerical results for S ∈ [0.75, 2.0],
including larger overstress values.

Simulations with different overstress show that there is no dif-
ference in critical area for very small overstress (�τ 0 = 50 MPa or
�τ 0 = 0.005 · �τE), and that a larger overstress leads to a smaller
critical area. For a fixed initiation area, larger overstress values may
lead to strong numerical artefacts (e.g. changes of rupture shape and
speed, artificial supershear transition, higher slip-rate amplitudes),
particularly if S is large. However, if the overstress is set close to
the critical value corresponding to the initiation area, the numerical
artefacts are minimized. This could be useful in cases when the
critical area for a small overstress is very large. Estimates A1 and
A2 may be used to determine the critical area for larger overstress.
Estimate A1 may be also used to determine the critical overstress
for given initiation area.

Our analysis of initiation duration suggests that overstress
�τ 0 � �τE may efficiently shorten the duration of the initia-
tion in the low-strength configurations without introducing arte-
facts. For higher-strength configurations, a larger initiation area
Ainit � 1.25 × A0

init leads to better results.
Our results provide general guidelines for proper and efficient ini-

tiation of spontaneous rupture propagation. Beyond its significance
for computational earthquake dynamics, the fundamental under-
standing of the conditions that enable self-sustained (also called
runaway) ruptures near an overstressed asperity can contribute to
the quantitative assessment of failure and hazard in a range of con-
texts that involve loading by a concentrated stress. These include
the nucleation of earthquakes and foreshocks driven by stress con-
centration near the boundaries between creeping and locked fault
areas, for example at the base of the seismogenic zone; the initia-
tion of frictional sliding near point loads in laboratory experiments
(Rubinstein et al. 2007; Kammer et al. 2014); induced seismicity
near concentrated loads generated by fluid injection (Garagash &
Germanovich 2012), and the initiation of landslides by locally ele-
vated pore pressures (Viesca & Rice 2012). The overstressed asper-
ity initiation is admittedly a crude representation of these situations,
but it encapsulates some of their key physical ingredients and hence
is a basic model that can provide insight into more realistic sit-
uations, as illustrated by the work of Ampuero et al. (2006) and
Ripperger et al. (2007).
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A P P E N D I X A : C R I T I C A L S I Z E F O R
RU NAWAY RU P T U R E U N D E R L OW
B A C KG RO U N D S T R E S S

Here we derive estimates of the critical initiation area in a fault
with low initial stress (high S value) based on the Griffith crack
equilibrium criterion and small-scale-yielding fracture mechanics.
Following the approach of Ripperger et al. (2007, Appendix B), we
adopt the following simplifying assumptions and approximations.

(i) The rupture is approximately circular, with radius R.
(ii) The initial stress distribution is axisymmetric, τ 0(r), where r

is the distance to the crack centre.
(iii) Stress overshoot is ignored, hence the stress drop is

�τ (r) = τ 0(r) − τ d.
(iv) The static stress intensity factor averaged along the crack

rim is approximated by the expression for tensile (mode I) cracks,

K0(R) = 2√
π R

∫ R

0

�τ (r )√
R2 − r 2

r dr. (A1)

(v) The details of weakening inside the process zone are ignored
and the rupture criterion is based on the fracture toughness Kc,
related to the slip-weakening fracture energy by

Gc = 1

2
(τs − τd )Dc = 1

2μ
K 2

c . (A2)

(vi) The crack is at rest if η · K0 = Kc, where the adjustable factor
η is a proxy to account for the differences between modes I, II and
III, the departures from circularity, the effect of dynamic overshoot,
etc.

Next, we determine the conditions for static equilibrium of a circu-
lar crack under non-uniform loading, consisting of a concentrated
stress over a uniform background stress. We consider a circular
overstressed asperity of radius a and stress τ i

0 .
If a � R, we can approximate the stress in excess of the back-

ground stress as a point load, that is, �τ (r) = �τ 0 + Fδ(r)/(2πr)
where �τ 0 = τ 0 − τ d is the background stress drop and the ampli-
tude of the point load is

F = πa2
(
τ i

0 − τ0

)
. (A3)

Note that the definition of the delta function in polar coordi-
nates in the form δ(r)/(2πr) is consistent with the assumption that∫ R

0 δ(r )dr = 1 (e.g. Kanwal 1983). Based on eq. (A1), the average
stress intensity factor is

K0(R) = F

(π R)3/2
+ 2 �τ0

√
R

π
. (A4)
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This function of R tends to ∞ at R = 0 and ∞ and has one minimum
given by

Kmin = 8

[
F �τ 3

0

2 (3 π )3

]1/4

. (A5)

A stable equilibrium crack (a solution to η · K0(R) = Kc) exists only
if η · Kmin ≤ Kc. Combined with eq. (A3), this yields the following
condition:

πa2 ≤ A1 = (3π )3

211

(
μDc

η

)2 (τs − τd )2

(τ i
0 − τ0)�τ 3

0

. (A6)

For an arbitrary value of a < R, eq. (A1) yields

K0(R) = 2√
π

(τ0 − τd )
√

a f (R/a, γ ), (A7)

where

γ = (τ i
0 − τ0)/(τ0 − τd ) (A8)

and

f (x, γ ) = √
x

[
1 + γ (1 −

√
1 − 1/x2)

]
. (A9)

The minimum of K0(R) has the following form:

Kmin = 2

√
a

π
(τ0 − τd ) fmin(γ ), (A10)

where fmin (γ ) = min xf(x, γ ). Deriving fmin as a function of γ in-
volves some algebra and does not seem to yield a compact expres-
sion, so we compute it by numerical minimization. The condition
η · Kmin ≤ Kc yields:

πa2 ≤ A2 = π 3

24

(
μDc

η

)2 (τs − τd )2

(τ0 − τd )4 f 4
min

. (A11)

We find that with the adjustable factor η = 1 both estimates,
A1 and A2, fit our numerical results very well. For this choice of
the adjustable factor, eq. (A2) corresponds to the energy flux in
mode III, GIII = K2/(2μ). In 2-D, the critical half-lengths for mode
III are smaller than those for mode II. The energy flux for mode
II is GII = (1 − ν) K2/(2μ), which corresponds to η = √

1 − ν.
However, with this choice of η, both estimates predict larger critical
area than observed in our numerical results.

Our numerical results suggest η = 1, indicating that mode III
is more important for the nucleation of rupture in 3-D than mode
II. However, to verify this conjecture mode II and III expressions
for the the stress intensity factor K along the crack rim need to be
derived (currently we are using mode I expression averaged along
the crack rim), which is beyond the scope of this study.

A P P E N D I X B : E F F E C T S O F
I N C R E A S I N G OV E R S T R E S S F RO M
0 . 0 0 5 · �τE T O 0 . 0 5 · �τE

As noted in Section 5 we perform a detailed analysis of the effects
caused by increasing the overstress from 0.005 · �τE to 0.05 · �τE

(i.e. corresponding to fixed increments of the overstress used in
Section 5.2). We consider only two limiting configurations, with
S = 0.1 and 2.0, with square initiation zone and with element size
h = 100 m. We analyse rupture time, rupture speed, traction and
slip rate.

Comparison of rupture time can reveal changes in the shape of
the rupture. However, rupture time is a cumulative quantity, and

Figure B1. Illustration of effects of increasing overstress from
0.005 to 0.05 · �τE. For the low-strength case (a) the interval between
thick contours in rupture time plots is 1 s and consequently the inter-
val between thick and thin contours is 0.5 s. For the high-strength case
(b) the intervals are 2 and 1 s, respectively. xh and yh denote distance
from hypocentre. The diamond depicts the receiver position on the fault
plane.

therefore any differences near the initiation zone remain visible
over the entire fault plane, complicating the comparison of rupture
shapes. To reduce this effect the rupture time is modified such that
the solution with higher overstress matches the rupture time of
the solution with lower overstress at the selected receiver position
(diamond in Fig. B1).

We include rupture speed in the in-plane direction in the analysis
to help us understand the differences in observed rupture time.
Rupture speed, vr, is computed as the inverse of spatial gradient of
rupture time Tr:

vr = 1

|∇Tr | . (B1)

To reduce artefacts caused by the finite time-step we applied moving
window average to rupture time. Consequently, the rupture speed
also acquires values from range [vR, vS]. Note that this does not
affect our analysis as we are only investigating differences in solu-
tions.

Comparison of tractions provides the possibility to compare the
stress variation due to propagating hypocentral S wave for high-
strength configuration. In addition, it provides visual reference of
differences in rupture time.
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Slip rate histories reflect details of the break-down process, and
hence a detailed comparison of shape and peak amplitudes is im-
portant. Therefore, we plot slip rates using relative time, starting at
the rupture time.

Results for S = 0.1 (Fig. B1a) show very good agreement except
for the traction for which we observe significant difference in rupture
time; the solution with higher overstress arrives 0.9 s earlier.

Results for S = 2.0 (Fig. B1b) are more complicated but overall
show good agreement. We can see differences in rupture time as well
as in rupture speed. However, these differences vanish at distance
≈7 − 8 km ≈10 − 11.5 · Lfric from the hypocentre. Comparison
of tractions shows again differences in rupture time; the peak stress
arrives 1.3 s earlier with higher overstress. In the zoomed-in image
we observe also difference in (apparent) rupture time of the stress
variation related to propagating S wave along the fault. The rupture
time of the stress variation is the same in both solutions, only the
shape is less steep in the solution with lower overstress leading
to apparent difference in rupture time. Nevertheless, the slip rates
show very good agreement.

Overall, this analysis indicates that variations of overstress
smaller than 0.05 · �τE do not affect significantly the resulting
self-sustained rupture propagation.

A P P E N D I X C : E F F E C T S O F U S I N G
H I G H E R OV E R S T R E S S S C A L E D
A C C O R D I N G T O C H O S E N I N I T I AT I O N
A R E A

We investigate in detail the effects caused by initiation of rupture
using higher overstress in two sets of simulations: (1) ‘slightly over-
critical’ set with initiation area barely larger than the critical area
for each overstress value (according to results in Fig. 12) and (2)
‘supercritical’ set with fixed initiation area A0

init corresponding to
the lowest considered overstress �τ 0 = 0.005 · �τE. As noted in
Section 5, we perform simulations for square initiation zone and
element size h = 100 m. We analyse the same quantities as in Ap-
pendix B for two limit configurations, S = 0.1 and 2.0. We expect
that the smallest overstress leads to reduced artefacts, consequently,
the reference solutions, for this analysis, are those for initiation area
A0

init with overstress �τ 0 = 0.005 · �τE. All numerical results are
summarized in Fig. C2 (similar to Fig. C1).

Fig. C1(a) compares four supercritical solutions for S = 0.1 and
Fig. C1(b) compares four slightly overcritical solutions. Rupture
time and rupture speed plots in Figs C1(a) and (b) show very good
agreement, with only small differences near initiation zone. The
differences, better visible in Fig. C1(a), occur only for points less

Figure C1. Illustration of the effects of overstress on (i) rupture time, (ii) rupture speed (in the in-plane direction), (iii) x-component of the slip rate and (iv)
x-component of the traction. Results with supercritical and slightly overcritical initiation for low-strength configuration are compared in (a) and (b), respectively.
Similarly, results for high-strength configuration are summarized in (c) and (d). The effective size of the (square) initiation zone is indicated in the rupture time
plots. A0

init denotes the area of the initiation zone with overstress �τ 0 = 0.005 · �τE).
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than A0
init/2 from hypocentre. On the other hand, comparison of

slip rates show very good agreement in both cases, with negligible
differences between solutions.

Comparing Figs C1(c) and (d) we observe that in case of the high-
strength configuration, S = 2.0, the effects are much stronger than in
the low-strength configuration and, moreover, they significantly vary
between the figures. Therefore we address the two cases separately.

The supercritical solutions for S = 2.0 are compared in Fig. C1(c).
Rupture time plots show large differences and, in contrast to the
low-strength case, the differences are not localized at shorter dis-
tances from the hypocentre. While at shorter distances from the
hypocentre, bumps in contours of the solutions with 3.55 · �τE

(i.e. largest considered overstress) indicate a transition to supers-
hear rupture speed, at larger distances the rupture tends to be more
circular when higher overstress is applied. The more circular shape
indicates variation of rupture speed in the antiplane direction. In
addition, rupture speed shows significant differences. Even after
propagating to the boundary of considered fault plane (i.e. 15 km)
the rupture initiated with higher overstress propagates with higher
speed than ruptures initiated with lower overstress. Moreover, the
overstresses 3.55 · �τE and 1.40 · �τE lead to supershear rup-
ture over a portion of the fault plane, although in both cases the
rupture speed eventually drops down to sub-Rayleigh speed. This
time we see significant differences also in the slip rate histories—
higher overstress leads to larger amplitudes and to changes in shape
of the slip rate peak. We also observe significant changes of the
traction peaks corresponding to the S-wave propagating along the
fault (peaks occurring before the static strength is reached). Partic-
ularly, the large amplitude of this peak may eventually lead to the
supershear transition for a configuration when the transition is not
expected.

As shown in Fig. C1(d), in the slightly overcritical case the ef-
fects on rupture propagation are small (compared with Fig. C1c).
The rupture time plots show significant variations only at shorter dis-
tances from the hypocentre, and, in contrast with the previous case,
the agreement is very good at larger distances and also the rupture
speed agrees well. Significant differences can be spotted only in
close vicinity of the hypocentre, but soon after initiation the rupture
speed varies consistently in all cases, though small differences be-
tween solutions are visible. At larger distances from the hypocentre
we observe very good agreement between all solutions. Slip rate plot
shows excellent agreement and even detail image shows no signifi-
cant differences. However, the zoomed-in image showing the stress
variation due to propagating S wave reveals that the reference solu-
tion is separated from the other three cases. Despite the amplitudes
of these solutions for higher overstress are larger than in the refer-
ence case, they are much lower than in case of fixed initiation area
(Fig. C1c).

As discussed in Appendix D, the differences in rupture times for
both configurations, S = 0.1 as well as S = 2.0, indicate that higher
overstress leads to shorter duration, assuming fixed initiation area.
This is also seen in traction plots in Figs C1(a) and (c) for fixed
initiation area. However, this does not apply to the remaining two
cases (Figs C1b and d) because we varied not only overstress but
also initiation area. As discussed in Section 5, to find the critical
overstress we consider fixed variations of the overstress, 0.05 · �τE.
Consequently, the critical overstress is obtained with uncertainty—
in the worst case the observed critical overstress may be almost
0.05 ·�τE larger then the minimum required overstress. As shown in
Appendix D, even such small variation of overstress may lead to sig-
nificant difference in duration of initiation in low- and high-strength
configurations. The differences in rupture times for low-strength

configuration (S = 0.1) are within limits observed in Fig. B1, there-
fore we attribute them to uncertainty in estimating the critical over-
stress. However, rupture times for high-strength configuration are
not consistent with this hypothesis, because the difference between
first and last rupture is larger than in Fig. B1 for overstresses 0.05 ·
�τE and 0.005 · �τE. Moreover, we observe that the solution with
smallest overstress arrives first. This would indicate that the differ-
ence between critical overstress and the minimum required over-
stress is in all cases less than 0.005 · �τE, which is very unlikely.
Therefore, we conjecture that this behaviour is a consequence of two
opposing effects: (i) smaller initiation area leads to longer duration
of the initiation, (ii) higher overstress leads to shorter duration of the
initiation.

In summary, our results reveal that slightly overcritical initiation,
that is, when the initiation area is set barely larger then critical area
for considered overstress, does not produce strong artefacts even if
the absolute value of the overstress is rather large.

A P P E N D I X D : E F F E C T S O F U S I N G
L A RG E R I N I T I AT I O N A R E A O R
H I G H E R OV E R S T R E S S T O S H O RT E N
T H E D U R AT I O N O F T H E I N I T I AT I O N

In Section 6, we analysed the relative difference in rupture time,
�Tr, and the relative difference of peak slip rate amplitude, �u̇max,
and showed that using either larger area or higher overstress than
their corresponding critical values leads to shorter duration of the
initiation. Here we support the conclusion by the analysis of rupture
shape, rupture speed, traction and slip rate time histories.

As mentioned in Section 6, we perform simulations for square
initiation zone and element size h = 100 m. All results are
summarized in Fig. D1 (note similar layout as Fig. C1). We
consider solutions obtained with smallest considered overstress,
�τ 0/�τE = 0.005, and the smallest initiation area, A0

i , as reference
solutions.

Numerical results for the low-strength case (Figs D1a and b)
show generally good agreement of all analysed quantities, ex-
cept rupture time, which shows that the application of initiation
area Ainit ≥ 2.2 · A0

init leads to significant changes in rupture shape.
Moreover, previous analysis of �Tr (Section 6) showed that higher
overstress provides more pronounced shortening of the duration.
Therefore, our analysis suggests that for low-strength configura-
tions application of higher overstress is preferable as the shortening
of duration is more pronounced and it introduces less artefacts than
using larger initiation zone.

Numerical results for the high-strength configuration (Figs D1c
and d) show much larger variability than for low-strength con-
figuration. First, we examine the effects of larger initiation zone,
that is, Fig. 13(c). Initiation areas Ainit ≥ 1.2 · A0

init lead to signif-
icant variations of rupture shape as indicated by the rupture time
comparisons. Also rupture speed shows significant differences. In
contrast with the low-strength case, we observe these differences
also at large distances from hypocentre. Moreover, we can identify
two branches in rupture speed. Even though the branches eventu-
ally converge, using Ainit ≥ 1.2 · A0

init may be associated with an
increase of numerical artefacts. The slip-rate comparison shows
not only differences in shape and peak amplitude but also larger
amplitudes of spurious high-frequency oscillations. Significant dif-
ferences towards the end of the slip-rate function are associated
with changes of the shape of the rupture (as indicated by rupture
time plots). We recall that the first healing occurs due to a heal-
ing pulse propagating from longer edge of the fault while a second
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Figure D1. Illustration of the effects associated with application of larger initiation area or higher overstress to shorten the duration of the initiation on (i)
rupture time, (ii) rupture speed (in the in-plane direction), (iii) x-component of the slip rate and (iv) x-component of the traction. Results for low-strength
configuration with increasing initiation area are shown in (a) and with increasing overstress in (b). Analogously, results for for high-strength configuration are
summarized in (c) and (d). Note similar layout as in Fig. C1.

healing episode is caused by healing pulse from shorter edge. Com-
parison of stress variation due to propagating S wave shows only
negligible differences for Ainit ≤ 1.4 · A0

init. We conclude that using
initiation area smaller than Ainit � 1.2 · A0

init leads to a significant
decrease of initiation duration without introducing strong numerical
artefacts.

Comparison of rupture time plots for the case of higher overstress
(Fig. D1d) reveals changes in rupture shape caused by overstress
�τ 0 ≥ 1.6 · �τE. For overstress �τ 0 = 2.5 · �τE we observe
undulations on the contour indicating supershear rupture speed. In
addition, the comparison of rupture speed reveals two branches sug-
gesting to use overstress �τ 0 ≤ 0.9 · �τE. Slip rate histories show
larger differences as in the case of larger initiation area. As indicated
by analysis of �u̇max in Section 6, overstress �τ 0 ≤ 0.3 · �τE leads
to small errors in peak amplitude (�u̇max < 5 per cent). However,
further increase of the overstress is associated with a steep gradient

of �u̇max (the secondary peak in the case of �τ 0 = 2.5 · �τE is
likely a consequence of supershear rupture that occurred near the
IZ). Comparison of tractions also shows generally stronger effects
than observed in the case of larger initiation zone. However, detailed
comparison of the stress variations associated with propagating S
wave reveals only slight changes of the apparent rupture time as
well as of the time when maximum is reached if �τ 0 ≤ 0.3 · �τE.
At the same time, the amplitude of the peak exhibits only negligible
variations for �τ 0 ≤ 0.3 · �τE.

In summary, our results and analysis suggest that for lower-
strength configurations, it is more efficient to apply higher over-
stress, �τ 0 ≤ �τE to shorten the duration of initiation without
introducing strong artefacts. On the other hand, application of
larger initiation area, Ainit � 1.2 · A0

init seems to be more suitable
for higher-strength configurations than application of higher over-
stress.
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